Citation: Wang Ziyan, Hira Khalid, Li Baili, Li Yao, Yu Xi, Hu Wenping. Tuning Rectification Properties of Molecular Electronic Devices by Mixed Monolayer[J]. Acta Chimica Sinica, ;2019, 77(10): 1031-1035. doi: 10.6023/A19050192 shu

Tuning Rectification Properties of Molecular Electronic Devices by Mixed Monolayer

  • Corresponding author: Yu Xi, xi.yu@tju.edu.cn
  • Received Date: 24 May 2019
    Available Online: 13 October 2019

    Fund Project: the National Natural Science Foundation of China 51733004the National Natural Science Foundation of China 51633006the National Natural Science Foundation of China 21773169Project supported by the National Natural Science Foundation of China (Nos. 21773169, 51633006, 51733004)

Figures(6)

  • We demonstrate in this work that the performance of self-assembled monolayer (SAM) molecular devices can be modulated by the composition and supramolecular structure of the molecular layer using mixed self-assembled monolayer strategy. We prepared the mixed monolayer on gold surface (with ca. 1 nm roughness) by co-adsorption of 11-(ferrocenyl)-undecanethiol (FUT, rectifier) and 1-undecanethiol (C11-SH, diluent). Micrometer scale molecular junctions were formed by using indium gallium eutectic alloy (EGaIn) as the top electrode. Electrical characterization of the junction found that the ratio of FUT and C11-SH molecules can tune the rectifying performance of the monolayer device:the higher the proportion of ferrocene is, the better the rectifying performance is. To our surprise, mixed monolayer prepared by 20% C11-SH and 80% FUT mixed solution exhibited higher rectification ratio than pure FUT monolayer, due to reduced leaking current. Surface reflective IR spectroscopy and the monolayer thickness characterization by the ellipsometer revealed loosely packed molecules on the surface in the pure FUT monolayer due to the bulky head group of the FUT and the rough gold substrate. FUT that partially lied down on the surface, or buried in the layer therefore created defects, which in turn become the origin of the leakage current. Upon insertion of C11-SH molecules in between the ferrocene molecules, the molecules in the monolayer become more ordered with the support of the C11-SH, as evidenced by decreased wave number of the C-H stretching mode of methylene group by reflective IR spectroscopy. Meanwhile, an increase in thickness for 80% FUT monolayer relative to pure FUT monolayer implied a better orientation of the FUT molecule in mixed monolayer. The ordered structure and better orientation largely improved the stability and reproducibility of the molecular device, reduced the leaking current and afforded higher rectification ratio. Our approach therefore provides a facile and effective strategy for regulating the performance of monolayer devices by molecule aggregation state.
  • 加载中
    1. [1]

      Jiang, L.; Huang, G. F.; Li, H. X.; Li, X. F.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Prog. Chem. 2005, 17, 172 (in Chinese).  doi: 10.3321/j.issn:1005-281X.2005.01.020

    2. [2]

      Jia, C. C.; Guo, X. F. Chem. Soc. Rev. 2013, 42, 5642.  doi: 10.1039/c3cs35527f

    3. [3]

      Huang, C.; Rudnev, A. V.; Hong, W.; Wandlowski, T. Chem. Soc. Rev. 2015, 44, 889.  doi: 10.1039/C4CS00242C

    4. [4]

      Li, T.; Hu, W.; Zhu, D. Adv. Mater. 2010, 22, 286.  doi: 10.1002/adma.200900864

    5. [5]

      Xin, N.; Guan, J.; Zhou, C.; Chen, X.; Gu, C.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.; Guo, X. Nat. Rev. Phys. 2019, 1, 211.  doi: 10.1038/s42254-019-0022-x

    6. [6]

      Pan, Z.-C.; Li, J.; Chen, L.; Tang, Y.; Shi, J.; Liu, J.; Liao, J.-L.; Hong, W. Sci. China Chem. 2019, 62, 1245.  doi: 10.1007/s11426-019-9493-6

    7. [7]

      Yuan, L.; Wang, L.; Garrigues, A. R.; Jiang, L.; Annadata, H. V.; Anguera Antonana, M.; Barco, E.; Nijhuis, C. A. Nat. Nanotechnol. 2018, 13, 322.  doi: 10.1038/s41565-018-0068-4

    8. [8]

      Yang, Y.; Liu, J. Y.; Yan, R. W.; Wu, D. Y.; Tian, Z. Q. Chem. J. Chin. Univ. 2015, 36, 9 (in Chinese).
       

    9. [9]

      Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318.  doi: 10.1021/acs.chemrev.5b00680

    10. [10]

      Yu, P.; Feng, A.; Zhao, S.; Wei, J.; Yang, Y.; Shi, J.; Hong, W. Acta Phys.-Chim. Sin. 2019, 35, 829 (in Chinese).  doi: 10.3866/PKU.WHXB201811027

    11. [11]

      Ai, Y.; Zhang, H. Acta Phys.-Chim. Sin. 2012, 28, 2237 (in Chinese).  doi: 10.3866/PKU.WHXB201209102

    12. [12]

      Chen, F.; Tao, N. J. Acc. Chem. Res. 2009, 42, 429.  doi: 10.1021/ar800199a

    13. [13]

      Chen, L. J.; Feng, A. N.; Wang, M. N.; Liu, J. y.; Hong, W. J.; Guo, X. F.; Xiang, D. Sci. China Chem. 2018, 61, 1368.  doi: 10.1007/s11426-018-9356-2

    14. [14]

      Liu, J.; Huang, X.; Wang, F.; Hong, W. Acc. Chem. Res. 2019, 52, 151.  doi: 10.1021/acs.accounts.8b00429

    15. [15]

      Zhang, X.; Li, T. Chin. Chem. Lett. 2017, 28, 2058.  doi: 10.1016/j.cclet.2017.09.008

    16. [16]

      Han, B.; Yu, X.; Hu, W. Chem. J. Chin. Univ. 2019, 40, 298 (in Chinese).  doi: 10.7503/cjcu20180629

    17. [17]

      Xu, X. N.; Han, B.; Yu, X.; Zhu, Y. Y. Acta Chim. Sinica 2019, 77, 485 (in Chinese).  doi: 10.11862/CJIC.2019.062
       

    18. [18]

      Yuan, L.; Jiang, L.; Zhang, B.; Nijhuis, C. A. Angew. Chem. Int. Ed. 2014, 53, 3377.  doi: 10.1002/anie.201309506

    19. [19]

      Tian, H.; Dai, Y.; Shao, H.; Yu, H.-Z. J. Phys. Chem. C 2013, 117, 1006.  doi: 10.1021/jp310012v

    20. [20]

      Nerngchamnong, N.; Yuan, L.; Qi, D. C.; Li, J.; Thompson, D.; Nijhuis, C. A. Nat Nanotechnol. 2013, 8, 113.  doi: 10.1038/nnano.2012.238

    21. [21]

      Weiss, E. A.; Chiechi, R. C.; Kaufman, G. K.; Kriebel, J. K.; Li, Z.; Duati, M.; Rampi, M. A.; Whitesides, G. M. J. Am. Chem. Soc. 2017, 129, 4336.

    22. [22]

      Nerngchamnong, N.; Thompson, D.; Cao, L.; Yuan, L.; Jiang, L.; Roemer, M.; Nijhuis, C. A. J. Phys. Chem. C 2015, 119, 21978.  doi: 10.1021/acs.jpcc.5b05137

    23. [23]

      Yuan, L.; Jiang, L.; Thompson, D.; Nijhuis, C. A. J. Am. Chem. Soc. 2014, 136, 6554.  doi: 10.1021/ja5007417

    24. [24]

      Miller, M. S.; Ferrato, M. A.; Niec, A.; Biesinger, M. C.; Carmichael, T. B. Langmuir. 2014, 30, 14171.  doi: 10.1021/la5032027

    25. [25]

      Vilan, A.; Aswal, D.; Cahen, D. Chem. Rev. 2017, 117, 4248.  doi: 10.1021/acs.chemrev.6b00595

    26. [26]

      Souto, M.; Diez-Cabanes, V.; Yuan, L.; Kyvik, A. R.; Ratera, I.; Nijhuis, C. A.; Cornil, J.; Veciana, J. Phys. Chem. Chem. Phys. 2018, 20, 25638.  doi: 10.1039/C8CP05488F

    27. [27]

      Gao, D.; Scholz, F.; Nothofer, H. G.; Ford, W. E.; Scherf, U.; Wessels, J. M.; Yasuda, A.; von Wrochem, F. J. Am. Chem. Soc. 2011, 133, 5921.  doi: 10.1021/ja110244j

    28. [28]

      Yuan, L.; Thompson, D.; Cao, L.; Nerngchangnong, N.; Nijhuis, C. A. J. Phys. Chem. C 2015, 119, 17910.  doi: 10.1021/acs.jpcc.5b04797

    29. [29]

      von Wrochem, F.; Gao, D.; Scholz, F.; Nothofer, H. G.; Nelles, G.; Wessels, J. M. Nat. Nanotechnol. 2010, 5, 618.  doi: 10.1038/nnano.2010.119

    30. [30]

      Thuo, M. M.; Reus, W. F.; Nijhuis, C. A.; Barber, J. R.; Kim, C.; Schulz, M. D.; Whitesides, G. M. J. Am. Chem. Soc. 2011, 133, 2962.  doi: 10.1021/ja1090436

    31. [31]

      Song, P.; Yuan, L.; Roemer, M.; Jiang, L.; Nijhuis, C. A. J. Am. Chem. Soc. 2016, 138, 5769.  doi: 10.1021/jacs.6b02208

    32. [32]

      Tian, H.; Xiang, D.; Shao, H.; Yu, H.-Z. J. Phys. Chem. C 2014, 118, 13733.  doi: 10.1021/jp5040745

    33. [33]

      Jin, J.; Kong, G. D.; Yoon, H. J. J. Phys. Chem. Lett. 2018, 9, 4578.  doi: 10.1021/acs.jpclett.8b01997

    34. [34]

      Kong, G. D.; Kim, M.; Cho, S. J.; Yoon, H. J. Angew. Chem. Int. Ed. 2016, 55, 10307.  doi: 10.1002/anie.201604748

    35. [35]

      Levine, I.; Weber, S. M.; Feldman, Y.; Bendikov, T.; Cohen, H.; Cahen, D.; Vilan, A. Langmuir 2012, 28, 404.  doi: 10.1021/la2035664

    36. [36]

      Chiechi, R. C.; Weiss, E. A.; Dickey, M. D.; Whitesides, G. M. Angew. Chem. Int. Ed. 2008, 47, 142.  doi: 10.1002/anie.200703642

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(16)
  • Abstract views(1645)
  • HTML views(300)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return