Citation: Xiao Li, Li Jiaheng, Wang Ting. Visible-Light-Induced N-Radical Directed Remote Functionalization of sp3 C-H Bonds[J]. Acta Chimica Sinica, ;2019, 77(9): 841-849. doi: 10.6023/A19050183 shu

Visible-Light-Induced N-Radical Directed Remote Functionalization of sp3 C-H Bonds

Figures(21)

  • The selective functionalization of unactivated sp3 carbon-hydrogen (C-H) bond is an attractive strategy in modern organic transformation. The hydrogen atom transfer (HAT) catalysis has recently shown its advances in remotely selective activation of an inert C-H bond with great functional group compatibility, generating new carbon-carbon (C-C) bonds and carbon-heteroatom (C-O, C-N, C-X) bonds. Therefore, the remote sp3 C-H functionalization has become an intensively investigated research area, drawing extensive attention in synthetic community. Particularly, the 1, 5-hydrogen atom abstraction of nitrogen radicals, the key step of the Hoffman-L ffler-Freytag (HLF) reaction, has been widely applied in the preparation of heterocycles. Comparing to the well-studied area of nucleophilic N-species, N-centered radical based reactions are still underdeveloped. The limited utility is partially due to the required use of hazardous radical initiators, elevated temperatures, or high-energy UV irradiation for the generation of N-radicals. Recently, visible-light photoredox catalysis has been leading efficient accesses to Nitrogen-radicals under mild conditions. The visible-light-induced nitrogen radical formation has also stimulated the development of the remote sp3 C-H functionalization by photoredox catalysis. The classic HLF reaction requires pre-functionalization at N-center in the substrate to promote the formation of N-radical. Recently, a direct N-H single electron transfer (SET) oxidation was realized by photoredox catalysis in Knowles and Rovis's group, generating N-radicals efficiently. The processes significantly simplified the preparation of the HLF reaction substrates and broaden the application of this classic reaction. In addition, the visible-light-induced nitrogen radical-directed reaction on modified imines provided possibilities for the remote sp3 C-H functionalization of ketones, as ketone is the product of imine hydrolysis. Moreover, the application of chiral Lewis acid catalysis combined with visible-light photoredox catalysis enabled the asymmetric alkylation of the unactivated remote sp3 C-H position, which achieves both regioselective and stereoselective functionalization. In conclusion, this strategy takes advantage of mild generation of N-radicals upon visible-light excitation. Subsequent 1, 5-hydrogen atom transfer (1, 5-HAT) and intermolecular radical coupling would realize the remote functionalization of unactivated sp3 C-H bonds. The strategies have been successfully applied in remote C(sp3)-H amidation, fluorination, chlorination, iodination, alkylation, vinylation, allylation, oxygenation, thioetherification, cyanation and alkynylation. In this review, we focus on visible-light-induced nitrogen radical directed functionalization of remote sp3 C-H bonds, summarized the methodologies, and briefly reviewed their synthetic applications in pharmaceuticals and natural products.
  • 加载中
    1. [1]

      Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.  doi: 10.1021/cr300503r

    2. [2]

      Hoplinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem.-Eur. J. 2014, 20, 3874.  doi: 10.1002/chem.201304823

    3. [3]

      Kärkäs, M. D.; Porco, J. A. Jr.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.  doi: 10.1021/acs.chemrev.5b00760

    4. [4]

      Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.  doi: 10.1002/anie.201200223

    5. [5]

      Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.  doi: 10.1039/B913880N

    6. [6]

      Yoon, T. P. ACS Catal. 2013, 3, 895.  doi: 10.1021/cs400088e

    7. [7]

      Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4. 355.  doi: 10.1021/cs400956a

    8. [8]

      Fukuzumi, S.; Ohkubo, K. Org. Biomol. Chem. 2014, 12, 6059.  doi: 10.1039/C4OB00843J

    9. [9]

      Hari, D. P.; König, B. Chem. Commun. 2014, 50, 6688.  doi: 10.1039/C4CC00751D

    10. [10]

      Martin, M. L.; Santos-Juanes, L.; Arques, A.; Amat, A. M.; Miranda, M. A. Chem. Rev. 2012, 112, 1710.  doi: 10.1021/cr2000543

    11. [11]

      Nicewicz, D. A.; Romero, N. A. Chem. Rev. 2016, 116, 10075.  doi: 10.1021/acs.chemrev.6b00057

    12. [12]

      Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044.  doi: 10.1039/C5CS00655D

    13. [13]

      Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 52.  doi: 10.1038/s41570-017-0052

    14. [14]

      Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429.  doi: 10.1021/acs.accounts.6b00214

    15. [15]

      Chen, Y.-Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China Chem. 2019, 62, 24.  doi: 10.1007/s11426-018-9399-2

    16. [16]

      He, J.; Wasa, M.; Chan, K. S.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2016, 117, 8754.

    17. [17]

      Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976.  doi: 10.1039/c0cs00182a

    18. [18]

      Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.  doi: 10.1002/anie.201201666

    19. [19]

      Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G. Chem. Soc. Rev. 2015, 44, 7764.  doi: 10.1039/C5CS00272A

    20. [20]

    21. [21]

      Chiba, S.; Chen, H. Org. Biomol. Chem. 2014, 12, 4051.  doi: 10.1039/C4OB00469H

    22. [22]

      Robertson, J.; Pillai, J.; Lush, R. K. Chem. Soc. Rev. 2001, 30, 94.  doi: 10.1039/b000705f

    23. [23]

      Mayer, J. M. Acc. Chem. Res. 2010, 44, 36.
       

    24. [24]

      Protti, S.; Fagnoni, M.; Ravelli, D. ChemCatChem 2015, 7, 1516.  doi: 10.1002/cctc.201500125

    25. [25]

      Wolff, M. E. Chem. Rev. 1963, 63, 55.  doi: 10.1021/cr60221a004

    26. [26]

      Qin, Q.; Yu, S. Org. Lett. 2015, 17, 1894.  doi: 10.1021/acs.orglett.5b00582

    27. [27]

      Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268.  doi: 10.1038/nature19811

    28. [28]

      Chu, J. C. K.; Rovis, T. Nature 2016, 539, 272.  doi: 10.1038/nature19810

    29. [29]

      Chen, D.-F.; Chu, J. C. K.; Rovis, T. J. Am. Chem. Soc. 2017, 139, 14897.  doi: 10.1021/jacs.7b09306

    30. [30]

      Yuan, W.; Zhou, Z.; Gong, L.; Meggers, E. Chem. Commun. 2017, 53, 8964.  doi: 10.1039/C7CC04941B

    31. [31]

      Shu, W.; Nevado, C. Angew. Chem., Int. Ed. 2017, 56, 1881.  doi: 10.1002/anie.201609885

    32. [32]

      Chen, H.; Guo, L.; Yu, S. Org. Lett. 2018, 20, 6255.  doi: 10.1021/acs.orglett.8b02737

    33. [33]

      Shen, X.; Zhao, J.; Yu, S. Org. Lett. 2018, 20, 5523.  doi: 10.1021/acs.orglett.8b02540

    34. [34]

      Xia, Y.; Wang, L.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 12940.  doi: 10.1002/anie.201807455

    35. [35]

      Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 744.  doi: 10.1002/anie.201710790

    36. [36]

      Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 1692.  doi: 10.1002/anie.201712066

    37. [37]

      Morcillo, S. P.; Dauncey, E. M.; Kim, J. H.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 12945.  doi: 10.1002/anie.201807941

    38. [38]

      Wappes, E. A.; Vanitcha, A.; Nagib, D. A. Chem. Sci. 2018, 9, 4500.  doi: 10.1039/C8SC01214H

    39. [39]

      Wu, K.; Wang, L.; Colón-Rodríguez, S.; Flechsig, G.; Wang, T. Angew. Chem., Int. Ed. 2019, 58, 1774.  doi: 10.1002/anie.201811004

    40. [40]

      Xu, B.; Tambar, U. K. ACS Catal. 2019, 9, 4727.

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    9. [9]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    10. [10]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    11. [11]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    12. [12]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    15. [15]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    16. [16]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

Metrics
  • PDF Downloads(49)
  • Abstract views(1805)
  • HTML views(383)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return