Citation: Chen Yilin, Chang Liang, Zuo Zhiwei. Visible Light Photoredox-Induced Smiles Rearrangement[J]. Acta Chimica Sinica, ;2019, 77(9): 794-802. doi: 10.6023/A19050179 shu

Visible Light Photoredox-Induced Smiles Rearrangement

  • Corresponding author: Zuo Zhiwei, zuozhw@shanghaitech.edu.cn
  • Received Date: 14 May 2019
    Available Online: 4 September 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21772121) and the "Thousand Plan" Youth programthe National Natural Science Foundation of China 21772121

Figures(20)

  • The intramolecular aromatic ring systems migration reactions, namely Smiles rearrangement is a powerful method for (hetero)aryl group functionalization. It can be employed as a complementary strategy to arene functionalization, and has found its broad applications in synthetic chemistry. After the initial documentation in 1894 this chemistry was intensively investigated by Smiles. In its classical pathway, the migration of aromatic ring system takes place ipso nucleophilic substitution. Accordingly, the migrating (hetero)aryl groups are highly electronic and steric-dependent. Moreover, as new reaction modes reported, advances have been made in the areas for arene C-C, C-N and C-O bond formation and radical triggered Smiles rearrangement has also enriched migrating units. Recently, there has been a rapid growth in the transformation induced by visible-light photocatalysis. Harnessing visible light as the energy source for chemical reactions usually serves as an environmentally benign alternative in comparison with classical radical pathway. Furthermore, photoredox-induced rearrangement represents a valuable and efficient approach for facilitating both the radical-based bond-cleaving and bond-forming events in a single step. It has become an effective tool for both synthesis and late stage modification of bio-active molecules. The last five years has witnessed many important advances in exploring photo-induced Smiles reactions, which make this classic reaction regained its attention. Significant progress has been made for expediting the generation of N-centered, C-centered and O-centered from a variety of precursors before single electron transfer rearrangement. This powerful synthetic platform for efficient promotes (hetero) aromatic group construction under mild reaction conditions, and has become a useful method for the synthesis and late stage functionalization of pharmaceutically interest products. In this perspective, we focus on visible light induced Smiles chemistry, which the major breakthroughs are classified based on migrating-induced radical species, and their synthetic applications are discussed briefly.
  • 加载中
    1. [1]

    2. [2]

      (a) Warren, L. A.; Smiles, S. J. Chem. Soc. 1930, 1327; (b) Warren, L. A.; Smiles, S. J. Chem. Soc. 1930, 956; (c) Levi, A.; Warren, L. A.; Smiles, S. J. Chem. Soc. 1933, 1490.

    3. [3]

      (a) Kong, W.; Merino, E.; Nevado, C. Angew. Chem., Int. Ed. 2014, 53, 5078; (b) Thaharn, W.; Soorukram, D.; Kuhakarn, C.; Tuchinda, P.; Reutrakul, V.; Pohmakotr, M. Angew. Chem., Int. Ed. 2014, 53, 2212; (c) Fuentes, N.; Kong, W.; Fernández-Sánchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964; (d) Wu, X.; Zhu, C. Chin. J. Chem. 2019, 37, 171.

    4. [4]

      Douglas, J. J.; Albright, H.; Sevrin, M. J.; Cole, K. P.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2015, 54, 14898.  doi: 10.1002/anie.201507369

    5. [5]

      Benito Collado, A. B.; Diaz Buezo, N.; Jimenez-Aguado, A. M.; Lafuente Blanco, C.; Martinez-Grau, M. A.; Pedregal-Tercero, C.; Toledo Escribano, M. A. U.S. 8232289 B2, 2011.

    6. [6]

      Douglas, J. J.; Sevrin, M. J.; Cole, K. P.; Stephenson, C. R. J. Org. Process Res. Dev. 2016, 20, 1148.  doi: 10.1021/acs.oprd.6b00126

    7. [7]

      Li, Y.; Hu, B.; Dong, W.; Xie, X.; Wan, J.; Zhang, Z. J. Org. Chem. 2016, 81, 7036.  doi: 10.1021/acs.joc.6b00735

    8. [8]

      Alpers, D.; Cole, K. P.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2018, 57, 12167.  doi: 10.1002/anie.201806659

    9. [9]

      Faderl, C.; Budde, S.; Kachkovskyi, G.; Rackl, D.; Reiser, O. J. Org. Chem. 2018, 83, 12192.  doi: 10.1021/acs.joc.8b01538

    10. [10]

      Liu, C.; Zhang, B. RSC Adv. 2015, 5, 61199.  doi: 10.1039/C5RA08996D

    11. [11]

      Brachet, E.; Marzo, L.; Selkti, M.; König, B.; Belmont, P. Chem. Sci. 2016, 7, 5002.  doi: 10.1039/C6SC01095D

    12. [12]

      Tang, S.; Yuan, L.; Deng, Y.-L.; Li, Z.-Z.; Wang, L.-N.; Huang, G.-X.; Sheng, R.-L. Tetrahedron Lett. 2017, 58, 329.  doi: 10.1016/j.tetlet.2016.12.027

    13. [13]

      Huang, H.; Li, Y. J. Org. Chem. 2017, 82, 4449.  doi: 10.1021/acs.joc.7b00350

    14. [14]

      Monos, T. M.; McAtee, R. C.; Stephenson, C. R. J. Science 2018, 361, 1369.

    15. [15]

      Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.  doi: 10.1039/b613443m

    16. [16]

      Yu, J.; Wu, Z.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 17156.  doi: 10.1002/anie.201811346

    17. [17]

      Whalley, D. M.; Duong, H. A.; Greaney, M. F. Chem. Eur. J. 2019, 25, 1927.  doi: 10.1002/chem.201805712

    18. [18]

      Xu, P.; Hu, K.; Gu, Z.; Cheng, Y.; Zhu, C. Chem. Commun. 2015, 51, 7222.  doi: 10.1039/C5CC01189B

    19. [19]

      (a) Huang, H.-L.; Yan, H.; Yang, C.; Xia, W. Chem. Commun. 2015, 51, 4910; (b) Li, Y.; Liu, B.; Ouyang, X.-H.; Song, R.-J.; Li, J.-H. Org. Chem. Front. 2015, 2, 1457; (c) Cai, S.; Tian, Y.; Zhang, J.; Liu, Z.; Lu, M.; Weng, W.; Huang, M. Adv. Synth. Catal. 2018, 360, 4084; (d) Lu, M.; Qin, H.; Lin, Z.; Huang, M.; Weng, W.; Cai, S. Org. Lett. 2018, 20, 7611; (e) Wang, H.; Xu, Q.; Yu, S. Org. Chem. Front. 2018, 5, 2224; (f) Wang, Q.-L.; Chen, Z.; Zhou, C.-S.; Xiong, B.-Q.; Zhang, P.-L.; Yang, C.-A.; Liu, Y.; Zhou, Q. Tetrahedron Lett. 2018, 59, 4551; (g) Yin, Y.; Weng, W.-Z.; Sun, J.-G.; Zhang, B. Org. Biomol. Chem. 2018, 16, 2356; (h) Wei, X.-J.; Noël, T. J. Org. Chem. 2018, 83, 11377.

    20. [20]

      Gu, L.; Gao, Y.; Ai, X.; Jin, C.; He, Y.; Li, G.; Yuan, M. Chem. Commun. 2017, 53, 12946.  doi: 10.1039/C7CC06484E

    21. [21]

      Zhou, N.-N.; Xu, P.; Li, W.-P.; Cheng, Y.-X.; Zhu, C.-J. Acta Chim. Sinica 2017, 75, 60.
       

    22. [22]

      Yu, J.; Wang, D.; Xu, Y.; Wu, Z.; Zhu, C. Adv. Synth. Catal. 2018, 360, 744.  doi: 10.1002/adsc.201701229

    23. [23]

      Tang, N.; Yang, S.; Wu, X.; Zhu, C. Tetrahedron 2019, 75, 1639.  doi: 10.1016/j.tet.2018.12.003

    24. [24]

      Wu, X.; Wang, M.; Huan, L.; Wang, D.; Wang, J.; Zhu, C. Angew. Chem. 2018, 130, 1656.  doi: 10.1002/ange.201709025

    25. [25]

      Dondoni, A.; Marra, A. Chem. Rev. 2004, 104, 2557.  doi: 10.1021/cr020079l

    26. [26]

      Shu, W.; Genoux, A.; Li, Z.; Nevado, C. Angew. Chem., Int. Ed. 2017, 56, 10521.  doi: 10.1002/anie.201704068

    27. [27]

      Wang, N.; Gu, Q.-S.; Li, Z.-L.; Li, Z.; Guo, Y.-L.; Guo, Z.; Liu, X.-Y. Angew. Chem., Int. Ed. 2018, 57, 14225.  doi: 10.1002/anie.201808890

    28. [28]

      Wang, S.-F.; Cao, X.-P.; Li, Y. Angew. Chem., Int. Ed. 2017, 56, 13809.  doi: 10.1002/anie.201706597

    29. [29]

      Gonzalez-Gomez, J. C.; Ramirez, N. P.; Lana-Villarreal, T.; Bonete, P. Org. Biomol. Chem. 2017, 15, 9680.  doi: 10.1039/C7OB02579C

    30. [30]

      Li, J.; Liu, Z.; Wu, S.; Chen, Y. Org. Lett. 2019, 21, 2077.  doi: 10.1021/acs.orglett.9b00353

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    5. [5]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    6. [6]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    7. [7]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    8. [8]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    9. [9]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

Metrics
  • PDF Downloads(184)
  • Abstract views(4389)
  • HTML views(1342)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return