Citation: Zhang Hong-Hao, Yu Shouyun. Advances on Transition Metals and Photoredox Cooperatively Catalyzed Allylic Substitutions[J]. Acta Chimica Sinica, ;2019, 77(9): 832-840. doi: 10.6023/A19050177 shu

Advances on Transition Metals and Photoredox Cooperatively Catalyzed Allylic Substitutions

  • Corresponding author: Yu Shouyun, yushouyun@nju.edu.cn
  • Received Date: 14 May 2019
    Available Online: 16 September 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21732003)the National Natural Science Foundation of China 21732003

Figures(13)

  • Allylic substitutions catalyzed by transition metals are important and practical reactions, which can construct carbon-carbon bonds and carbon-heteroatom bonds efficiently and stereoselectively. Various transition metal catalysts, such as Pd, Ir, Cu, Ni, Rh and Ru, have been widely used in this reaction. To date, various "soft", or stabilized nucleophiles (pKa < 25), including malonates, acetoacetates and enolates, have been used in allylic substitutions. Conversely, the high reactivity of "hard", or non-stabilized alkyl nucleophiles (pKa>25) has limited their utility in catalytic processes and their compatibility with functional groups. Visible light photoredox catalysis has been widely used in organic synthesis because it can generate high reactive intermediates, such as free radicals and radical ions, under mild conditions using green and clean energy, and has gradually developed into an important synthetic tool. Furthermore, merging photoredox catalysis with transition metal catalysts has become a popular strategy for expanding the synthetic utility of visible-light photocatalysis, and has led to the discovery of novel reaction modes. Due to the high activity of the intermediates in photoredox catalysis, the selectivity of these reactions, especially stereoselectivity, is still a challenge. In view of the importance of allyl substitutions, the allyl substitution co-catalyzed by transition metals and photoredox has attracted the interest of chemists. The synergistic strategy can realize allylic substitutions which are difficult to be achieved by single transition metal catalysis. The regioselectivity and stereoselectivity of these reactions also show different characteristics. It is expected to become an important complement to allylic substitution catalyzed by single metal. In this review, recent advances on allylic substitution co-catalyzed by different transition metals and photoredox are summarized. Meanwhile, the mechanism of representative transformations will be briefly introduced and the prospective in this area will be given.
  • 加载中
    1. [1]

      (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387. (b) Tsuji, J. Acc. Chem. Res. 1969, 2, 144.

    2. [2]

      Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1977, 99, 1649.  doi: 10.1021/ja00447a064

    3. [3]

      (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395. (b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921. (c) Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res. 2006, 39, 747. (d) Trost, B. M. Org. Process Res. Dev. 2012, 16, 185.

    4. [4]

    5. [5]

    6. [6]

      (a) Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chem. Rev. 2008, 108, 2796. (b) Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2005, 44, 4435.

    7. [7]

      Zhang, H.; Gu, Q.; You, S.-L. Chin. J. Org. Chem. 2019, 39, 15(in Chinese).

    8. [8]

      (a) Turnbull, B. W. H.; Evans, P. A. J. Org. Chem. 2018, 83, 11463. (b) Thoke, M. B.; Kang, Q. Synthesis 2019, DOI: 10.1055/s-0037-1611784.

    9. [9]

      Bruneau, C.; Renaud, J.-L.; Demerseman, B. Chem. Eur. J. 2006, 12, 5178.  doi: 10.1002/chem.200600173

    10. [10]

    11. [11]

      For reviews on this topic, see: (a) Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824. (b) Alexakis, A.; Backvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chem. Rev. 2008, 108, 2796. (c) Teichert, J. F.; Ferin-ga, B. L. Angew. Chem., Int. Ed. 2010, 49, 2486. (d) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587. (e) Hartwig, J. F.; Pouy, M. J. Top. Organomet. Chem. 2011, 34, 169. (f) Schàfer, P.; Sidera, M.; Palacin, T.; Fletcher, S. P. Chem. Commun. 2017, 53, 12499.

    12. [12]

      (a) Zheng, W.-H.; Zheng, B.-H.; Zhang, Y.; Hou, X.-L. J. Am. Chem. Soc. 2007, 129, 7718. (b) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092. (c) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2009, 131, 12056. (d) Zhang, P.; Brozek, L. A.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 10686. (e) Chen, J.-P.; Ding, C.-H.; Liu, W.; Hou, X.-L.; Dai, L.-X. J. Am. Chem. Soc. 2010, 132, 15493. (f) Zhang, P.; Le, H.; Kyne, R. E.; Morken, J. P. J. Am. Chem. Soc. 2011, 133, 9716. (g) Trost, B. M.; Thaisrivongs, D. A.; Hartwig, J. J. Am. Chem. Soc. 2011, 133, 12439. (h) Chen, J.-P.; Peng, Q.; Lei, B.-L.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem. Soc. 2011, 133, 14180. (i) Brozek, L. A.; Ardolino, M. J.; Morken, J. P. J. Am. Chem. Soc. 2011, 133, 16778. (j) Ardolino, M. J.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 7092. (k) Niyomchon, S.; Audisio, D.; Luparia, M.; Maulide, N. Org. Lett. 2013, 15, 2318. (l) Misale, A.; Niyomchon, S.; Luparia, M.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 7068. (m) Mao, J.; Zhang, J.; Jiang, H.; Bellomo, A.; Zhang, M.; Gao, Z.; Dreher, S. D.; Walsh, P. J. Angew. Chem., Int. Ed. 2016, 55, 2526. (n) Murakami, R.; Sano, K.; Iwai, T.; Taniguchi, T.; Monde, K.; Sawamura, M. Angew. Chem., Int. Ed. 2018, 57, 9465.

    13. [13]

    14. [14]

    15. [15]

      For selected examples on palladium metallaphotoredox catalysis, see: (a) Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18566. (b) Neufeldt, S. R.; Sanford, M. S. Adv. Synth. Catal. 2012, 354, 3517. (c) Zoller, J.; Fabry, D. C.; Ronge, M. A.; Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 13264. (d) Mori, K.; Kawashima, M.; Yamashita, H. Chem. Commun. 2014, 50, 14501. (e) Choi, S.; Chatterjee, T.; Choi, W. J.; You, Y.; Cho, E. J. ACS Catal. 2015, 5, 4796. (f) Zhou, C.; Li, P.; Zhu, X.; Wang, L. Org. Lett. 2015, 17, 6198. (g) Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y. Chem. Eur. J. 2015, 21, 13191. (h) Liu, K.; Zou, M.; Lei, A. J. Org. Chem. 2016, 81, 7088. (i) Kärkäs, M. D.; Bosque, I.; Matsuura, B. S.; Stephenson, C. R. J. Org. Lett. 2016, 18, 5166. (j) Shimomaki, K.; Murata, K.; Martin, R.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 9467. (k) Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204.

    16. [16]

      For selected examples on nickel metallaphotoredox catalysis, see: (a) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; MacMillan, D. W. C. Science 2014, 345, 437. (b) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433. (c) Corcé, V.; Chamoreau, L.-M.; Derat, E.; Goddard, J.-P.; Ollivier, C.; Fensterbank, L. Angew. Chem., Int. Ed. 2015, 54, 11414. (d) Nakajima, K.; Nojima, S.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2016, 55, 14106. (e) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. Science 2016, 352, 1304. (f) Heitz, D. R.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 12715.

    17. [17]

      For selected examples on copper metallaphotoredox catalysis, see: (a) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034. (b) Yoo, W.-J.; Tsukamoto, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2015, 54, 6587.

    18. [18]

      For selected examples on gold metallaphotoredox catalysis, see: (a) Sahoo, B.; Hopkinson, M. N.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 5505. (b) Shu, X.-Z.; Zhang, M.; He, Y.; Frei, H.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 5844.

    19. [19]

      (a) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035. (b) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429. (c) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nature Rev. 2017, 1, 0052. (d) Wang, C.-S.; Dixneuf, P. H.; Soulé, J.-F. Chem. Rev. 2018, 118, 7532. (e) Zhou, W.-J.; Zhang, Y.-H.; Gui, Y.-Y.; Sun, L.; Yu, D.-G. Synthesis 2018, 50, 3359. (f) Chuentragool, P.; Kurandina, D.; Gevorgyan, V. Angew. Chem., Int. Ed. 2019, DOI: 10.1002/anie.201813523.

    20. [20]

      Lang, S. B.; O'Nele, K. M.; Tunge, J. A. J. Am. Chem. Soc. 2014, 136, 13606.  doi: 10.1021/ja508317j

    21. [21]

      Lang, S. B.; O'Nele, K. M.; Tunge, J. A. Chem. Eur. J. 2015, 21, 18589.  doi: 10.1002/chem.201503644

    22. [22]

      Xuan, J.; Zeng, T.-T.; Feng, Z, -J.; Deng, Q.-H.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J.; Alper, H. Angew. Chem., Int. Ed. 2015, 54, 1625.  doi: 10.1002/anie.201409999

    23. [23]

      Jennifer K. Matsui, J. K.; Gutiérrez-Bonet, A.; Rotella, M.; Alam, R.; Gutierrez, O.; Molander, G. A. Angew. Chem., Int. Ed. 2018, 57, 15847.  doi: 10.1002/anie.201809919

    24. [24]

      Thullen, S. M.; Rovis, T. J. Am. Chem. Soc. 2017, 139, 15504.  doi: 10.1021/jacs.7b09252

    25. [25]

      Zheng, J.; Breit, B. Angew. Chem., Int. Ed. 2019, 58, 3392.  doi: 10.1002/anie.201813646

    26. [26]

      Schwarz, J. L.; Schäfers, F.; Tlahuext-Aca, A.; Lückemeier, L.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 12705.  doi: 10.1021/jacs.8b08052

    27. [27]

      For selected examples on asymmetric nickel metallaphotoredox catalysis, see: (a) Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 138, 1832. (b) Stache, E. E.; Rovis, T.; Doyle, A. G. Angew. Chem., Int. Ed. 2017, 56, 3679. For selected examples on asymmetric copper metallaphotoredox catalysis, see: (c) Wang, D.; Zhu, N.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2017, 139, 15632. (d) Sha, W.; Deng, L.; Ni, S.; Mei, H.; Han, J.; Pan, Y. ACS Catal. 2018, 8, 7489.

    28. [28]

      Zhang, H.-H.; Zhao, J.-J.; Yu, S. J. Am. Chem. Soc. 2018, 140, 16914.  doi: 10.1021/jacs.8b10766

    29. [29]

      Mitsunuma, H.; Tanabe, S.; Fuse, H.; Ohkubo, K.; Kanai, M. Chem. Sci. 2019, 10, 3459.  doi: 10.1039/C8SC05677C

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(66)
  • Abstract views(2891)
  • HTML views(755)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return