Citation: Jin Jikang, Zhang Fenglian, Wang Yifeng. Lewis Base-Boryl Radical Enabled Giese Reaction and Barton Decarboxylation of N-Hydroxyphthalimide (NHPI) Esters[J]. Acta Chimica Sinica, ;2019, 77(9): 889-894. doi: 10.6023/A19050173 shu

Lewis Base-Boryl Radical Enabled Giese Reaction and Barton Decarboxylation of N-Hydroxyphthalimide (NHPI) Esters

  • Corresponding author: Zhang Fenglian, zfl9@ustc.edu.cn Wang Yifeng, yfwangzj@ustc.edu.cn
  • Received Date: 13 May 2019
    Available Online: 9 September 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21672195, 21702201) and the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China 21672195the National Natural Science Foundation of China 21702201

Figures(2)

  • Decarboxylation of N-hydroxyphthalimide (NHPI) esters represents a powerful tool to generate carbon radicals, which has wide applications in the construction of C-C bonds and C-X bonds. Traditionally, the radical decarboxylation of NHPI esters has been enabled by transition-metal catalysis and photoredox catalysis. Recently, several visible light-mediated photosensor-free decarboxylation reactions have been reported with the use of special electron-donor systems. While notable, it's still highly desirable to develop transition-metal-free, mild, and general methods to realize the radical decarboxylation of NHPI esters. Herein, we report 4-dimethylaminopyridine (DMAP)-boryl radical enabled Giese reaction and Barton decarboxylation of NHPI esters. The reaction starts from the generation of DMAP-boryl radical in the presence of a radical initiator, which then adds specifically to the carbonyl oxygen atom of NHPI ester 2, followed by β-fragmentation to give a nucleophilic carbon radical intermediate. Addition of the carbon radical to electron-deficient alkenes affords the Giese reaction product 4. On the other hand, hydrogen atom transfer from thiol to the nucleophilic carbon radical results in the Barton decarboxylation products 5. The reactions exhibit a broad substrate scope and excellent functional group tolerance. NHPI esters of primary, secondary, and tertiary alkyl carboxylic acids, including bio-active natural products and drugs, proceed smoothly to give the corresponding products in moderate to good yields. A variety of electron-deficient alkenes, such as vinyl esters, vinyl amides and vinyl sulphones, can be used as the Michael acceptors. A general procedure for the Giese reaction is as following:a solution of NHPI ester 2 (0.5 mmol), 4-dimethylaminopyridine-borane (0.6 mmol), AIBN (0.1 mmol) and electron-deficient alkenes 3 (0.4 mmol) in toluene (4.0 mL) was stirred at 80℃ for 4 h under nitrogen atmosphere. After evaporation of solvent, the crude residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate) to afford Giese reaction product 4. A general procedure for the Barton decarboxylation is as following:a solution of NHPI ester 2 (0.5 mmol), 4-dimethylaminopyridine-borane (0.55 mmol), TBHN (0.1 mmol) and PhSH (0.1 mmol) in benzotrifluoride (5.0 mL) was stirred at 80℃ for 1 h under nitrogen atmosphere. After evaporation of solvent, the crude residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate) to afford decarboxylative reduction product 5.
  • 加载中
    1. [1]

      Liu, X.; Wang, Z.; Cheng, X.; Li, C. J. Am. Chem. Soc. 2012, 134, 14330.  doi: 10.1021/ja306638s

    2. [2]

      Wang, Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 4258.  doi: 10.1021/ja210361z

    3. [3]

      Yin, F.; Wang, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 10401.  doi: 10.1021/ja3048255

    4. [4]

      Liu, C.; Wang, X.; Li, Z.; Cui, L.; Li, C. J. Am. Chem. Soc. 2015, 137, 9820.  doi: 10.1021/jacs.5b06821

    5. [5]

      Cui, L.; Chen, H.; Liu, C.; Li, C. Org. Lett. 2016, 18, 2188.  doi: 10.1021/acs.orglett.6b00802

    6. [6]

      Tan, X.; Liu, Z.; Shen, H.; Zhang, P.; Zhang, Z.; Li, C. J. Am. Chem. Soc. 2017, 139, 12430.  doi: 10.1021/jacs.7b07944

    7. [7]

      Dong, Y.; Wang, Z.; Li, C. Nat. Commun. 2017, 8, 277.  doi: 10.1038/s41467-017-00376-z

    8. [8]

      Tan, X.; Song, T.; Wang, Z.; Chen, H.; Cui, L.; Li, C. Org. Lett. 2017, 19, 1634.  doi: 10.1021/acs.orglett.7b00439

    9. [9]

      Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 5257.  doi: 10.1021/ja501621q

    10. [10]

      Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C. Nature 2016, 536, 322.  doi: 10.1038/nature19056

    11. [11]

      Bloom, S.; Liu, C.; K lmel, D. K.; Qiao, J. X.; Zhang, Y.; Poss, M. A.; Ewing, W. R.; MacMillan, D. W. C. Nat. Chem. 2017, 10, 205.
       

    12. [12]

      Kautzky, J. A.; Wang, T.; Evans, R. W.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 6522.  doi: 10.1021/jacs.8b02650

    13. [13]

      Liang, Y.; Zhang, X.; MacMillan, D. W. C. Nature 2018, 559, 83.  doi: 10.1038/s41586-018-0234-8

    14. [14]

      Le Vaillant, F.; Courant, T.; Waser, J. Angew. Chem., Int. Ed. 2015, 54, 11200.  doi: 10.1002/anie.201505111

    15. [15]

      Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196.  doi: 10.1002/anie.201504559

    16. [16]

      Okada, K.; Okamoto, K.; Oda, M. J. Am. Chem. Soc. 1988, 110, 8736.  doi: 10.1021/ja00234a047

    17. [17]

      Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M. J. Am. Chem. Soc. 1991, 113, 9401.  doi: 10.1021/ja00024a074

    18. [18]

      Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174.  doi: 10.1021/jacs.6b00250

    19. [19]

      Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 15632.  doi: 10.1002/anie.201505731

    20. [20]

      Huang, H.; Jia, K.; Chen, Y. ACS Catal. 2016, 6, 4983.  doi: 10.1021/acscatal.6b01379

    21. [21]

      Jin, Y.; Fu, H. Asian J. Org. Chem. 2017, 6, 368.  doi: 10.1002/ajoc.201600513

    22. [22]

      Li, Y.; Ge, L.; Muhammad, M. T.; Bao, H. Synthesis 2017, 49, 5263.  doi: 10.1055/s-0036-1590935

    23. [23]

      Malins, L. R. Pept. Sci. 2018, 110, 24049.  doi: 10.1002/pep2.24049

    24. [24]

      Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science 2016, 352, 801.  doi: 10.1126/science.aaf6123

    25. [25]

      Toriyama, F.; Cornella, J.; Wimmer, L.; Chen, T.-G.; Dixon, D. D.; Creech, G.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 11132.  doi: 10.1021/jacs.6b07172

    26. [26]

      Wang, J.; Qin, T.; Chen, T.-G.; Wimmer, L.; Edwards, J. T.; Cornella, J.; Vokits, B.; Shaw, S. A.; Baran, P. S. Angew. Chem., Int. Ed. 2016, 55, 9676.  doi: 10.1002/anie.201605463

    27. [27]

      Li, C.; Wang, J.; Barton, L. M.; Yu, S.; Tian, M.; Peters, D. S.; Kumar, M.; Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.; Yan, M.; Baran, P. S. Science 2017, 356, 7355.  doi: 10.1126/science.aam7355

    28. [28]

      Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.; Baran, P. S. Angew. Chem., Int. Ed. 2017, 56, 260.  doi: 10.1002/anie.201609662

    29. [29]

      Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.; Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.; Ackerman, L. K. G.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.  doi: 10.1021/jacs.6b01533

    30. [30]

      Huang, L.; Olivares, A. M.; Weix, D. J. Angew. Chem., Int. Ed. 2017, 56, 11901.  doi: 10.1002/anie.201706781

    31. [31]

      Lackner, G. L.; Quasdorf, K. W.; Overman, L. E. J. Am. Chem. Soc. 2013, 135, 15342.  doi: 10.1021/ja408971t

    32. [32]

      Lackner, G. L.; Quasdorf, K. W.; Pratsch, G.; Overman, L. E. J. Org. Chem. 2015, 80, 6012.  doi: 10.1021/acs.joc.5b00794

    33. [33]

      Slutskyy, Y.; Overman, L. E. Org. Lett. 2016, 18, 2564.  doi: 10.1021/acs.orglett.6b00895

    34. [34]

      Tlahuext-Aca, A.; Garza-Sanchez, R. A.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 3708.  doi: 10.1002/anie.201700049

    35. [35]

      Kachkovskyi, G.; Faderl, C.; Reiser, O. Adv. Synth. Catal. 2013, 355, 2240.  doi: 10.1002/adsc.201300221

    36. [36]

      Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 1968.  doi: 10.1021/acs.orglett.6b00489

    37. [37]

      Jin, Y.; Jiang, M.; Wang, H.; Fu, H. Sci. Rep. 2016, 6, 20068.  doi: 10.1038/srep20068

    38. [38]

      Candish, L.; Teders, M.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 7440.  doi: 10.1021/jacs.7b03127

    39. [39]

      Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Science 2017, 357, 283.  doi: 10.1126/science.aan3679

    40. [40]

      Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363, 1429.  doi: 10.1126/science.aav3200

    41. [41]

      Gao, L.; Wang, G.; Cao, J.; Yuan, D.; Xu, C.; Guo, X.; Li, S. Chem. Commun. 2018, 54, 11534.  doi: 10.1039/C8CC06152A

    42. [42]

      Yang, J.; Li, Z.; Zhu, S. Chin. J. Org. Chem. 2017, 37, 2481.
       

    43. [43]

      Ren, S.-C.; Zhang, F.-L.; Qi, J.; Huang, Y.-S.; Xu, A.-Q.; Yan, H.-Y.; Wang, Y.-F. J. Am. Chem. Soc. 2017, 139, 6050.  doi: 10.1021/jacs.7b01889

    44. [44]

      Yu, Y.-J.; Zhang, F.-L.; Cheng, J.; Hei, J.-H.; Deng, W.-T.; Wang, Y.-F. Org. Lett. 2018, 20, 24.  doi: 10.1021/acs.orglett.7b03201

    45. [45]

      Jin, J.-K.; Zhang, F.-L.; Zhao, Q.; Lu, J.-A.; Wang, Y.-F. Org. Lett. 2018, 20, 7558.  doi: 10.1021/acs.orglett.8b03303

    46. [46]

      Qi, J.; Zhang, F.-L.; Huang, Y.-S.; Xu, A.-Q.; Ren, S.-C.; Yi, Z.-Y.; Wang, Y.-F. Org. Lett. 2018, 20, 2360.  doi: 10.1021/acs.orglett.8b00694

    47. [47]

      Ren, S.-C.; Zhang, F.-L.; Xu, A.-Q.; Yang, Y.; Zheng, M.; Zhou, X.; Fu, Y.; Wang, Y.-F. Nat. Commun. 2019, 10, 1934.  doi: 10.1038/s41467-019-09825-3

    48. [48]

      Franz, J. A.; Bushaw, B. A.; Alnajjar, M. S. J. Am. Chem. Soc. 1989, 111, 268.  doi: 10.1021/ja00183a040

    49. [49]

      Newcomb, M.; Choi, S.-Y.; Horner, J. H. J. Org. Chem. 1999, 64, 1225.  doi: 10.1021/jo981930s

    50. [50]

      Crich, D.; Grant, D.; Krishnamurthy, V.; Patel, M. Acc. Chem. Res. 2007, 40, 453.  doi: 10.1021/ar600020v

    51. [51]

      Pan, X.; Lac te, E.; Lalevée, J.; Curran, D. P. J. Am. Chem. Soc. 2012, 134, 5669.  doi: 10.1021/ja300416f

    52. [52]

      Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114, 2587.  doi: 10.1021/cr400441m

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    10. [10]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    11. [11]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    12. [12]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    13. [13]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Shasha Liu Yongmei Liu Youqin Li Juan Wang Lisen Sun Jinfen Zhang Xiang Gao Xingwen Sun . “Cognitive Experience-Strengthening Foundation-Frontier Innovation”: Construction and Practice of the Chemistry Experimental Curriculum System for Fudan University. University Chemistry, 2024, 39(7): 180-187. doi: 10.12461/PKU.DXHX202405095

    18. [18]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

Metrics
  • PDF Downloads(59)
  • Abstract views(2491)
  • HTML views(470)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return