Citation: Xu Jian, Zhang Shifan, Luo Ying, Zhang Li, Zhang Fan, Huang Tingjing, Song Qiuling. Radical Promoted Annulation of Alkynones for the Construction of 2, 3-Disubstituted Thiochromones[J]. Acta Chimica Sinica, ;2019, 77(9): 932-938. doi: 10.6023/A19050169 shu

Radical Promoted Annulation of Alkynones for the Construction of 2, 3-Disubstituted Thiochromones

  • Corresponding author: Song Qiuling, qsong@hqu.edu.cn
  • Received Date: 11 May 2019
    Available Online: 6 September 2019

    Fund Project: the National Natural Science Foundation of China 21602065Project supported by the National Natural Science Foundation of China (No. 21602065)

Figures(3)

  • Thiochromones are prevalent structures in various biological active molecules, natural products and potent drug candidates. However, only few methods for the synthesis of thiochromones were reported, and the traditional methods suffer from harsh conditions such as high temperature, strong acid, etc. Recently, synthesis of thiochromones from alkynones had been independently developed by the group of Larock, Müller and Fu. Compared to traditional substances, alkynones are easy to be prepared and handled. More recently, Wu and co-authors improved this synthetic approach via a palladium-catalyzed carbonylative four-component reaction. Despite these great advances, syntheses of diversely functionalized thiochromones, especially 2-functionalized thiochromones which were not easily prepared via the above approaches, are still in demand and highly desirable. As part of our on-going interest in the synthesis of heterocyclic compounds via radical cascade reactions, herein, we developed a radical-involved annulation of methylthiolatedalkynones with diverse radical precursors to access 2-substituted thiochromones. Various substituents such as F, Br and OMe on aromatic ring were all compatible with the reaction, affording the desired 2-substituted thiochromones in moderate to good yields. The most advantage of this protocol is the compatibility of diverse radical precursors including H-phosphorus oxides, aryl aldehydes, arylthiols, BrCF2COOEt, acetone and acetonitrile. Moreover, a series of control experiments were performed to interpret the reaction pathway as a radical process instead of electrophilic cyclization process. Mechanism studies showed that radical involved C(sp2)-S bond formation and C(sp3)-S cleavage are the key steps. A general procedure for the radical annulation of alkynones with acetone and acetonitrile is as followed. To the mixture of alkynones 1 (0.2 mmol), in a schlenk flask was added a solution of tert-butyl peroxybenzoate (TBPB) (0.4 mmol) in acetone or acetonitrile (2 mL) under nitrogen atmosphere. The reaction was stirred at 130 or 120℃ for 12 h. Upon completion, the reaction mixture was concentrated under vacuum. The residue was purified by silica gel column chromatography using a petroleum ether/ethyl acetate (V:V, 8:1~5:1) to afford the corresponding products 6.
  • 加载中
    1. [1]

      (a) Nakazumi, H.; Ueyama, T.; Kitao, T. J. Heterocycl. Chem. 1984, 21, 193. (b) Couquelet, J.; Tronche, P.; Niviere, P.; Andraud, G. Trav. Soc. Pharm. Montpellier 1963, 23, 214. (c) Nakazumi, H.; Ueyama, T.; Kitao, T. J. Heterocycl. Chem. 1984, 21, 193.

    2. [2]

      (a) Holshouser, M. H.; Loeffler, L. J.; Hall, I. H. J. Med. Chem. 1981, 24, 853. (b) Razdan, R. K.; Bruni, R. J.; Mehta, A. C.; Weinhardt, K. K.; Papanastassiou, Z. B. J. Med. Chem. 1978, 21, 643.

    3. [3]

      Dhanak, D.; Keenan, R. M.; Burton, G.; Kaura, A.; Darcy, M. G. D.; Shah, H.; Ridgers, L. H.; Breen, A.; Lavery, P.; Tew, D. G.; West, A. Bioorg. Med. Chem. Lett. 1998, 8, 3677.  doi: 10.1016/S0960-894X(98)00666-0

    4. [4]

      (a) Sangeetha, S.; Sekar, G. Org. Lett. 2018, 21, 75. (b) Zhang, F.; Wu, X. F. J. Org. Chem. 2018, 83, 13612. (c) Kim, H. Y.; Song, E.; Oh, K. Org. Lett. 2017, 19, 312. (d) Zhu, F.-X.; Wu, X.-F. J. Org. Chem. 2018, 83, 13612.

    5. [5]

      (a) Schneller, S. W. Adv. Heterocycl. Chem. 1975, 18, 59. (b) Nakazumi, H.; Wanatabe, S.; Kitaguchi, T.; Kitao, T. Bull. Chem. Soc. Jpn. 1990, 63, 847. (c) Razdan, R. K.; Bruni, R. J.; Mehta, A. C.; Weinhardt, K. K.; Papanastassiou, Z. B. J. Med. Chem. 1978, 21, 643. (d) Buggle, K.; Delahunty, J. J.; Philbin, E. M.; Ryan, N. D. J. Chem. Soc. C 1971, 3168.

    6. [6]

      Zhou, C.; Dubrovsky, A. V.; Larock, R. C. J. Org. Chem. 2006, 71, 1626.  doi: 10.1021/jo0523722

    7. [7]

      Willy, B.; Frank, W.; Müller, T. J. J. Org. Biomol. Chem. 2010, 8, 90.  doi: 10.1039/B917627F

    8. [8]

      Yang, X.-B.; Li, S.-F.; Liu, H.-X.; Jiang, Y.-Y.; Fu, H. RSC Adv. 2012, 2, 6549.  doi: 10.1039/c2ra20897k

    9. [9]

      Shen, C.-R.; Spannenberg, A.; Wu, X.-F. Angew. Chem., Int. Ed. 2016, 55, 5067.  doi: 10.1002/anie.201600953

    10. [10]

      (a) Pan, X.-Q.; Zou, J.-P.; Zhang, G.-L.; Zhang, W. Chem. Commun. 2010, 46, 1721. (b) Yan, Z.-F.; Xie, J.; Zhu, C.-J. Adv. Synth. Catal. 2017, 359, 4153. (c) Pan, C.-D.; Huang, B.-F.; Hu, W.-M.; Feng, X.-M.; Yu, J.-T. J. Org. Chem. 2016, 81, 2087. (d) Zhang, Y.; Ye, S.-Y.; Ji, M.-M.; Li, L.-S.; Guo, D.-M.; Zhu, G.-G. J. Org. Chem. 2017, 82, 6811. (e) Zhang, Y.; Guo, D.-M.; Ye, S.-Y.; Liu, Z.-C.; Zhu, G.-G. Org. Lett. 2017, 19, 1302. (f) Zhou, N.-N.; Yang, Z.-F.; Zhang, H.-L.; Wu, Z.-K.; Zhu, C.-J. J. Org. Chem. 2016, 81, 12181. (g) Zhang, Y.; Zhang, J.-H.; Hu, B.-Y.; Ji, M.-M.; Ye, S.-Y.; Zhu, G.-G. Org. Lett. 2018, 20, 2988.

    11. [11]

      (a) Hari, D. P.; Hering, T.; Kcning, B. Org. Lett. 2012, 14, 5334. (b) Staples, M. K.; Grange, R. L.; Angus, J. A.; Ziogas, J.; Tan, N. P. H.; Taylor, K. T.; Schiesser, C. H. Org. Biomol. Chem. 2011, 9, 473. (c) Leardini, R.; Pedulli, G. F.; Tundo, A.; Huffman Jr, L. G. Synthesis 2000, 970. (d) Zang, H.; Sun, J. G.; Dong, X.; Li, P.; Zhang, B. Adv. Synth. Catal. 2016, 358, 1746. (e) Yang, W.-C.; Wei, K.; Sun, X.; Zhu, J.; Wu, L. Org. Lett. 2018, 20, 3144. (f) Xu, J.; Yu, X.-X.; Yan, J.-X.; Song, Q. Org. Lett. 2017, 19, 6292. (g) Gao, Y.-Z.; Zhang, P.-B.; Li, G.; Zhao, Y.-F. J. Org. Chem. 2018, 83, 13726. (h) Yan, J.-X.; Xu, J.; Zhou, Y.; Chen, J.; Song, Q. Org. Chem. Front 2018, 5, 1483. (i) Liu, W.; Hu, Y.-Q.; Hong, X.-Y.; Li, G.-X.; Huang, X.-B.; Gao, W.-X.; Liu, M.-C.; Xia, Y.; Zhou, Y.-B.; Wu, H.-Y. Chem. Commun. 2018, 54, 14148.

    12. [12]

      Xu, J.; Zhang, F.; Zhang, S.-F.; Zhang, L.; Yu, X.-X.; Yan, J.-X. Song, Q. Org. Lett. 2019, 21, 1112.

    13. [13]

      Liu, Q.-Y.; Zhao, X.-H.; Li, J.-L.; Cao, S. Acta Chim. Sinica 2018, 76, 945.  doi: 10.3866/PKU.WHXB201801292
       

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(12)
  • Abstract views(1191)
  • HTML views(256)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return