Citation: Yang Junhang, Fu Xiaobo, Lu Zenghui, Zhu Gangguo. Visible-Light Photocatalytic Remote Thiolation of Aldehydes Triggered by Sulfonylation of Alkenes With Thiosulfonates[J]. Acta Chimica Sinica, ;2019, 77(9): 901-905. doi: 10.6023/A19050161 shu

Visible-Light Photocatalytic Remote Thiolation of Aldehydes Triggered by Sulfonylation of Alkenes With Thiosulfonates

  • Corresponding author: Zhu Gangguo, gangguo@zjnu.cn
  • Received Date: 2 May 2019
    Available Online: 12 September 2019

    Fund Project: the National Natural Science Foundation of China 21672191Project supported by the National Natural Science Foundation of China (No. 21672191)

Figures(4)

  • Due to the prevalence of organosulfur compounds in pharmaceuticals, agrochemicals, and functional materials, the development of new efficient and practical methods for the construction of C-S bonds is highly desirable in organic synthesis. Recently, the radical sulfonylation of alkenes has attracted considerable attention because of its efficient and versatile synthesis of organosulfur compounds under mild reaction conditions. The previous methods usually involve the formation of one C-S bond. In contrast, the thiosulfonylation of alkenes represents a highly attractive protocol for the concurrent formation of two distinct C-S bonds. Herein, a novel visible-light photocatalytic remote thiolation of aldehydes triggered by the radical sulfonylation of unactivated alkenes has been developed, with readily available thiosulfonates as both the sulfonating and thiolating reagents, successfully giving 6-or 7-sulfonylated thioesters in moderate to high yields with broad substrate scope and excellent atom-economics. As compared to the traditional methods that are limited to 1, 2-or 1, 1-thiosulfonylation of alkenes, the reaction described here constitutes the first example of 1, 6-or 1, 7-thiosulfonylation of functionalized alkenes, thus offering a good complementary protocol to the existing methods. Preliminary mechanistic studies suggest a radical pathway consisting of the formation of sulfonyl radical, alkene sulfonylation, intramolecular 1, n-hydrogen atom transfer (1, n-HAT), and thiolation of acyl radical. A representative procedure for the visible-light induced remote thiolation of aldehydes initiated by the sulfonylation of alkenes with thiosulfonates is as following:To a mixture of thiosulfonates 2 (0.5 mmol), Ir(ppy)3 (1 mol%), and K2HPO4 (0.5 mmol) in 4 mL of MeCN was added alkenyl aldehydes 1 (0.25 mmol) under a N2 atmosphere. After 18 h of irradiation with 15 W blue LEDs at 25℃, the reaction mixture was quenched with water, extracted with EtOAc, dried over anhydrous Na2SO4, concentrated, and purified by column chromatography with silica gel (EtOAc/petroleum ethers=1:5) to give products 3 or 4.
  • 加载中
    1. [1]

      Madasu, S. B.; Vekariya, N. A.; Kiran, M. N. V. D. H.; Gupta, B.; Islam, A.; Douglas, P. S.; Babu, K. R. Beilstein J. Org. Chem. 2012, 8, 1400.  doi: 10.3762/bjoc.8.162

    2. [2]

      Fromtling, R. A. Drugs Future 1989, 14, 1165.  doi: 10.1358/dof.1989.014.12.109647

    3. [3]

      Calverley, P. M. A.; Anderson, J. A.; Celli, B.; Ferguson, G. T.; Jenkins, C.; Jones, P. W.; Yates, J. C.; Vestbo, J. N. Engl. J. Med. 2007, 356, 775.  doi: 10.1056/NEJMoa063070

    4. [4]

    5. [5]

      Julia, M.; Paris, J. M. Tetrahedron Lett. 1973, 14, 4833.  doi: 10.1016/S0040-4039(01)87348-2

    6. [6]

      Olah, G. A.; Mathew, T.; Prakash, G. K. S. Chem. Commun. 2001, 1696.
       

    7. [7]

      (a) Deeming, A. S.; Russell, C. J.; Hennessy, A. J.; Willis, M. C. Org. Lett. 2014, 16, 150. (b) Wan, Y.; Zhang, J.; Chen, Y.; Kong, L.; Luo, F.; Zhu, G. Org. Biomol. Chem. 2017, 15, 7204.

    8. [8]

      (a) Zhou, Q.; Gui, J.; Pan, C.-M.; Albone, E.; Cheng, X.; Suh, E. M.; Grasso, L.; Ishihara, Y.; Baran, P. S. J. Am. Chem. Soc. 2013, 135, 12994. (b) Miao, W.; Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J. J. Am. Chem. Soc. 2018, 140, 880. (c) Griffiths, R. J.; Kong, W. C.; Richards, S. A.; Burley, G. A.; Willis, M. C.; Talbot, E. P. A. Chem. Sci. 2018, 9, 2295.

    9. [9]

    10. [10]

      (a) Liu, T.; Li, Y.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Org. Lett. 2018, 20, 3605. (b) Ye, S.; Zheng, D.; Wu, J.; Qiu, G. Chem. Commun. 2019, 55, 2214.

    11. [11]

      (a) Meyer, A. U.; J ger, S.; Hari, D. P.; K nig, B. Adv. Synth. Catal. 2015, 357, 2050. (b) Zhang, G.; Zhang, L.; Yi, H. Luo, Y.; Qi, X.; Tung, C.-H.; Wu, L.-Z.; Lei, A. Chem. Commun. 2016, 52, 10407. (c) Ratushnyy, M.; Kamenova, M.; Gevorgyan, V. Chem. Sci. 2018, 9, 7193. (d) Sun, D.; Zhang, R. Org. Chem. Front. 2018, 5, 92. (e) Cai, S.; Xu, Y.; Chen, D.; Li, L.; Chen, Q.; Huang, M.; Weng, W. Org. Lett. 2016, 18, 2990.

    12. [12]

      (a) Quebatte, L.; Thommes, K.; Severin, K. J. Am. Chem. Soc. 2006, 128, 7440. (b) Hossain, A.; Engl, S.; Lutsker, E.; Reiser, O. ACS Catal. 2019, 9, 1103. (c) Taniguchi, T.; Idota, A.; Ishibashi, H. Org. Biomol. Chem. 2011, 9, 3151. (d) Pagire, S. K.; Paria, S.; Reiser, O. Org. Lett. 2016, 18, 2106. (e) Xiong, Y.; Sun, Y.; Zhang, G. Org. Lett. 2018, 20, 6250. (f) Rao, W.-H.; Jiang, L.-L.; Liu, X.-M.; Chen, M.-J.; Chen, F.-Y.; Jiang, X.; Zhao, J.-X.; Zou, G.-D.; Zhou, Y.-Q.; Tang, L. Org. Lett. 2019, 21, 2890. (g) Wang, H.; Wang, G.; Lu, Q.; Chiang, C.-W.; Peng, P.; Zhou, J.; Lei, A. Chem. Eur. J. 2016, 22, 14489. (h) Yuan, Y.; Cao, Y.; Lin, Y.; Li, Y.; Huang, Z.; Lei, A. ACS Catal. 2018, 8, 10871.

    13. [13]

      (a) Gao, Y.; Mei, H.; Han, J.; Pan, Y. Chem. Eur. J. 2018, 24, 17205. (b) Sun, J.; Li, P.; Guo, L.; Yu, F.; He, Y.-P.; Chu, L. Chem. Commun. 2018, 54, 3162. (c) Pirenne, V.; Kurtay, G.; Voci, S.; Bouffier, L.; Sojic, N.; Robert, F.; Bassani, D. M.; Landais, Y. Org. Lett. 2018, 20, 4521.

    14. [14]

      (a) Chen, Z.-Z.; Liu, S.; Hao, W.-J.; Xu, G.; Wu, S.; Miao, J.-N.; Jiang, B.; Wang, S.-L.; Tu, S.-J.; Li, G. Chem. Sci. 2015, 6, 6654. (b) Huang, M.-H.; Zhu, C.-F.; He, C.-L.; Zhu, Y.-L.; Hao, W.-J.; Wang, D.-C.; Tu, S.-J.; Jiang, B. Org. Chem. Front. 2018, 5, 1643. (c) Wu, W.; Yi, S.; Yu, Y.; Huang, W.; Jiang, H. J. Org. Chem. 2017, 82, 1224. (d) Cao, X.; Cheng, X.; Xuan, J. Org. Lett. 2018, 20, 449.

    15. [15]

      (a) Zhu, D.; Shao, X.; Hong, X.; Lu, L.; Shen, Q. Angew. Chem., Int. Ed. 2016, 55, 15807. (b) Zhao, Q.; Lu, L.; Shen, Q. Angew. Chem., Int. Ed. 2017, 56, 11575.

    16. [16]

      (a) Li, H.; Shan, C.; Tung, C.-H.; Xu, Z. Chem. Sci. 2017, 8, 2610. (b) Huang, S.; Thirupathi, N.; Tung, C.-H.; Xu, Z. J. Org. Chem. 2018, 83, 9449.

    17. [17]

      He, F.-S.; Wu, Y.; Zhang, J.; Xia, H.; Wu, J. Org. Chem. Front. 2018, 5, 2940.  doi: 10.1039/C8QO00824H

    18. [18]

      (a) Cheng, C.; Liu, S.; Lu, D.; Zhu, G. Org. Lett. 2016, 18, 2852. (b) Nie, X.; Cheng, C.; Zhu, G. Angew. Chem., Int. Ed. 2017, 56, 1898. (c) Jin, W.; Zhou, Y.; Zhao, Y.; Ma, Q.; Kong, L.; Zhu, G. Org. Lett. 2018, 20, 1435. (d) Wan, Y.; Shang, T.; Lu, Z. Zhu, G. Org. Lett. 2019, 21, 4187.

    19. [19]

      For selected reviews on photocatalysis, see: (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102. (b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828. (c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322. (d) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013, 11, 2387. (e) Yu, S.; Zhang, Y.; Wang, R.; Jiang, H.; Cheng, Y.; Kadi, A.; Fun, H.-K. Synthesis 2014, 2711. (f) Xie, J.; Jin, H.; Xu, P.; Zhu, C. Tetrahedron Lett. 2014, 55, 36. (g) Wang, C.; Lu, Z. Org. Chem. Front. 2015, 2, 179. (h) Matsui, J. K.; Lang, S. B.; Heitz, D. R.; Molander, G. A. ACS Catal. 2017, 7, 2563.

    20. [20]

      For selected reviews, see: (a) Hu, X.-Q.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2017, 56, 1960. (b) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654. (c) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569. (d) Nechab, M.; Mondal, S.; Bertrand, M. P. Chem. Eur. J. 2014, 20, 16034. For selected reports involving 1, n-HAT since 2018, see: (e) Short, M. A.; Blackburn, J. M.; Roizen, J. L. Angew. Chem., Int. Ed. 2018, 57, 296. (f) Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 744. (g) Wu, X.; Wang, M.; Huan, L.; Wang, D.; Wang, J.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 1640. (h) Wu, S.; Wu, X.; Wang, D.; Zhu, C. Angew. Chem., Int. Ed. 2019, 58, 1499. (i) Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 1692. (j) Xia, Y.; Wang, L.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 12940. (k) Ratushnyy, M.; Parasram, M.; Wang, Y.; Gevorgyan, V. Angew. Chem., Int. Ed. 2018, 57, 2712. (l) Chuentragool, P.; Yadagiri, D.; Morita, T.; Sarkar, S.; Parasram, M.; Wang, Y.; Gevorgyan, V. Angew. Chem., Int. Ed. 2019, 58, 1794. (m) Na, C. G.; Alexanian, E. J. Angew. Chem., Int. Ed. 2018, 57, 13106. (n) Li, Z.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2018, 57, 13288. (o) Bao, X.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2019, 58, 2139. (p) Kim, I.; Park, B.; Kang, G.; Kim, J.; Jung, H.; Lee, H.; Baik, M.-H.; Hong, S. Angew. Chem., Int. Ed. 2018, 57, 15517. (q) Guan, H.; Sun, S.; Mao, Y.; Chen, L.; Lu, R.; Huang, J.; Liu, L. Angew. Chem., Int. Ed. 2018, 57, 11413. (r) Hu, A.; Guo, J.-J.; Pan, H.; Tang, H.; Gao, Z.; Zuo, Z. J. Am. Chem. Soc. 2018, 140, 1612. (s) An, X.-D.; Jiao, Y.-Y.; Zhang, H.; Gao, Y.; Yu, S. Org. Lett. 2018, 20, 401. (t) Zhu, Y.; Huang, K.; Pan, J.; Qiu, X.; Luo, X.; Qin, Q.; Wei, J.; Wen, X.; Zhang, L.; Jiao, N. Nat. Commun. 2018, 9, 2625. (u) Li, G.-X.; Hu, X.; He, G.; Chen, G. Chem. Sci. 2019, 10, 688. (v) Zhang, Z.; Stateman, L. M.; Nagib, D. A. Chem. Sci. 2019, 10, 1207. (w) Wu, K.; Wang, L.; Colón-Rodríguez, S.; Flechsig, G.-U.; Wang, T. Angew. Chem., Int. Ed. 2019, 58, 1774. (x) Liu, Z.; Xiao, H.; Zhang, B.; Shen, H.; Zhu, L.; Li, C. Angew. Chem., Int. Ed. 2019, 58, 2510.

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    8. [8]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    9. [9]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    16. [16]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    20. [20]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

Metrics
  • PDF Downloads(9)
  • Abstract views(1243)
  • HTML views(220)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return