Citation: Hai Man, Guo Li-Na, Wang Le, Duan Xin-Hua. Visible Light Promoted Ketoalkylation of Quinoxaline-2(1H)-ones via Oxidative Ring-Opening of Cycloalkanols[J]. Acta Chimica Sinica, ;2019, 77(9): 895-900. doi: 10.6023/A19040155 shu

Visible Light Promoted Ketoalkylation of Quinoxaline-2(1H)-ones via Oxidative Ring-Opening of Cycloalkanols

  • Corresponding author: Duan Xin-Hua, duanxh@xjtu.edu.cn
  • Received Date: 30 April 2019
    Available Online: 21 September 2019

    Fund Project: Project supported by the Natural Science Foundation in Shaanxi Province (No. 2019JM-299)the Natural Science Foundation in Shaanxi Province 2019JM-299

Figures(4)

  • Substituted quinoxalin-2(1H)-ones represent an important class of fused heterocyclic compounds which are existing in numerous bioactive natural products, pharmaceuticals, and functional materials. As a result, there are many methods for the synthesis of this heterocyclic compounds over the past several years. In this context, the direct C-H functionalization of quinoxalin-2(1H)-ones have proved to be an effective protocol to diverse heterocycles, such as radical C(3)-H arylation, phosphonation, amination, and acylation of quinoxalin-2(1H)-ones. However, the direct C-H alkylation of quinoxalin-2(1H)-ones is still rare. Because of their importance, it is desirable to introduce alkyl substituents, especially those bearing functional groups, at the 3-position of quinoxalin-2(1H)-ones, which would probably promote their applications in new drug discovery and development. Thus, this article reports a visible light promoted C(3)-ketoalkylation of quinoxaline-2(1H)-ones via oxidative ring-opening of cycloalkanols. At room temperature, the reaction is carried out by using cycloalkanols as the ketoalkylating agent and potassium persulfate as oxidizing agent in a solution of methanol and water (V:V=1:2) for 16 h upon visible light irradiation. A variety of keto-functionalized alkyl moieties with different chain length have been successfully incorporated into the C(3)-position of quinoxalin-2(1H)-ones. Thus, the procedure provides a greener, environmentally friendly and simple method for the synthesis of quinoxalin-2(1H)-one derivatives. A representative procedure for this reaction is given as follows. An oven-dried quartz reaction tube (10 mL) equipped with a magnetic stir bar was charged with K2S2O8 (2.0 equiv., 0.4 mmol), quinoxalin-2(1H)-one 1 (1.0 equiv., 0.2 mmol) and cycloalkanol 2 (1.5 equiv., 0.3 mmol). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of 1.3 mL of H2O and 0.7 mL of MeOH were added under nitrogen. Then the reaction tube was sealed and was irradiated under blue light at room temperature for 16 h. After completion of the reaction, ethyl acetate was added to the reaction mixture, and washed with brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (petroleum ether/ethyl acetate, V:V=4:1) affords the corresponding product.
  • 加载中
    1. [1]

      Ries, U. J.; Priepke, H. W. M.; Hauel, N. H.; Handschuh, S.; Mihm, G.; Stassen, J. M.; Wienen, W.; Nar, H. Bioorg. Med. Chem. Lett. 2003, 13, 2297.  doi: 10.1016/S0960-894X(03)00443-8

    2. [2]

      (a) Carta, A.; Piras, S.; Loriga, G.; Paglietti, G. Mini-Rev. Med. Chem. 2006, 6, 1179. (b) Li, X.; Yang, K.-H.; Li, W.-L.; Xu, W.-F. Drugs Future 2006, 31, 979. (c) Hussain, S.; Parveen, S.; Hao, X.; Zhang, S.-Z.; Wang, W.; Qin, X.-Y.; Yang, Y.-C.; Chen, X.; Zhu, S.-J.; Zhu, C.-J.; Ma, B. Eur. J. Med. Chem. 2014, 80, 383.

    3. [3]

      Buratti, W.; Gardini, G. P.; Minisci, F. Tetrahedron 1971, 27, 3655.  doi: 10.1016/S0040-4020(01)97776-2

    4. [4]

      For review, see: (a) Proctor, R. S. J.; Phipps, R. J. Angew. Chem., Int. Ed. 2019, DOI: 10.1002/anie.201900977.For selected examples, see: (b) Huff, C. A.; Cohen, R. D.; Dykstra, K. D.; Streckfuss, E.; DiRocco, D. A.; Krska, S. W. J. Org. Chem. 2016, 81, 6980. (c) Wu, X.-X.; Zhang, H.; Tang, N.-N.; Wu, Z.; Wang, D.-P.; Ji, M.-S.; Xu, Y.; Wang, M.; Zhu, C. Nat. Commun. 2018, 9, 3343. (d) Wu, X.-X.; Wang, M.-Y.; Huan, L.-T.; Wang, D.-P.; Wang, J.-W.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 1640.

    5. [5]

      (a) Jiao, J.; Murakami, K.; Itami, K. ACS Catal. 2016, 6, 610. (b) Legnani, L.; Cerai, G. P.; Morandi, B. ACS Catal. 2016, 6, 8162. (c) Zhou, Z.; Ma, Z.; Behnke, N. E.; Gao, H.; Kurti, L. J. Am. Chem. Soc. 2017, 139, 115. (d) Wang, P.; Li, G. C.; Jain, P.; Farmer, M. E.; He, J.; Shen, P. X.; Yu, J. Q. J. Am. Chem. Soc. 2016, 138, 14092.

    6. [6]

    7. [7]

      Gao, M.; Li, Y.; Xie, L.; Chauvin, R.; Cui, X. Org. Biomol. Chem. 2016, 52, 2846.
       

    8. [8]

      Li, Y.; Gao, M.; Wang, L.; Cui, X. Org. Biomol. Chem. 2016, 14, 8428.  doi: 10.1039/C6OB01283C

    9. [9]

      (a) Yuan, J.-W.; Fu, J.-H.; Liu, S.-N.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. Org. Biomol. Chem. 2018, 16, 3203. (b) Xie, L.-Y.; Peng, S.; Fan, T.-G.; Liu, Y.-F.; Sun, M.; Jiang, L.-L.; Wang, X.-X.; Cao, Z.; He, W.-M. Sci. China, Chem. 2019, 62, 460.

    10. [10]

      Hong, G.-F.; Yuan, J.-W.; Fu, J.-H.; Pan, G.-Y.; Wang, Z.-W.; Yang, L.-R.; Xiao, Y.-M.; Mao, P.; Zhang, X.-M. Org. Chem. Front. 2019, 6, 1173.  doi: 10.1039/C9QO00105K

    11. [11]

      (a) Yuan, J.-W.; Fu, J.-H.; Yin, J.-H.; Dong, Z.-H.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. Org. Chem. Front. 2018, 5, 2820. (b) Fu, J.-H.; Yuan, J.-W.; Zhang, Y.; Xiao, Y.-M.; Mao, P.; Diao, X.-Q.; Qu, L.-B. Org. Chem. Front. 2018, 5, 3382.

    12. [12]

      Yang, L.; Gao, P.; Duan, X.-H.; Gu, Y.-R.; Guo, L.-N. Org. Lett. 2018, 20, 1034.  doi: 10.1021/acs.orglett.7b03984

    13. [13]

      Gu, Y.-R.; Duan, X.-H.; Chen, L.; Ma, Z.-Y.; Gao, P.; Guo, L.-N. Org. Lett. 2019, 21, 917.  doi: 10.1021/acs.orglett.8b03865

    14. [14]

      (a) Liu, R.; Huang, Z.-H.; Murray, M. G.; Guo, X.-Y.; Liu, G. J. Med. Chem. 2011, 54, 5747. (b) Qin, X.-Y.; Hao, X.; Han, H.; Zhu, S.-J.; Yang, Y.-C.; Wu, B.-B.; Hussain, S.; Parveen, S.; Jing, C.-J.; Ma, B.; Zhu, C.-J. J. Med. Chem. 2015, 58, 1254.

    15. [15]

      For review, see: (a) Wu, X.-X.; Zhu, C. Chem. Select. 2017, 2, 10678. For selected examples, see: (b) Ren, R.-G.; Zhao, H.-J.; Huan, L.-T.; Zhu, C. Angew. Chem., Int. Ed. 2015, 54, 12692. (c) Zhao, H.-J.; Fan, X.-F.; Yu, J.-J.; Zhu, C. J. Am. Chem. Soc. 2015, 137, 3490. (d) Wang, S.; Guo, L.-N.; Wang, H.; Duan, X.-H. Org. Lett. 2015, 17, 4798. (e) Jia, K.; Zhang, F.; Huang, H.; Chen, Y. J. Am. Chem. Soc. 2016, 138, 1514. (f) Huan, L.-T.; Zhu, C. Org. Chem. Front. 2016, 3, 1467. (g) Guo, L.-N.; Deng, Z.-Q.; Wu, Y.; Hu, J. RSC Adv. 2016, 6, 27000. (h) Ren, R.-G.; Wu, Z.; Xu, Y.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 2866. (i) Nikolaev, A.; Legault, C. Y.; Zhang, M.-H.; Orellana, A. Org. Lett. 2018, 20, 796. (j) Zhao, R.; Yao, Y.; Zhu, D.; Chang, D.-H.; Liu, Y.; Shi, L. Org. Lett. 2018, 20, 1228.

    16. [16]

    17. [17]

      For selected examples, see: (a) Minisci, F.; Citterio, A.; Giordano, C. Acc. Chem. Res. 1983, 16, 27. (b) Chinchilla, R.; Najera, C.; Yus, M. Chem. Rev. 2004, 104, 2667. (c) Yin, F.; Wang, X.-S. Org. Lett. 2014, 16, 1128. (d) Wei, W.; Wen, J.-W.; Yang, D.-S.; Du, J.; You, J.-M.; Wang, H. Green Chem. 2014, 16, 2988. (e) Li, Y.-M.; Shen, Y.-H.; Chang, K.-J.; Yang, S.-D. Tetrahedron 2014, 70, 1991. (f) Laha, J. K.; Patel, K. V.; Tummalapalli, K. S. S.; Dayal, N. Chem. Commun. 2016, 52, 10245.

    18. [18]

      (a) Devan, S.; Shah, B.-A. Chem. Commun. 2016, 52, 1490. (b) Zhang, Y.-Q.; Teuscher, K. B.; Ji, H.-T. Chem. Sci. 2016, 7, 2111. (c) Zhao, Y.-T.; Huang, B.-B.; Yang, C.; Xia, W.-J. Org. Lett. 2016, 18, 3326. (d) Meyer, A. U.; Alexander, W.; K nig, B. Angew. Chem., Int. Ed. 2017, 56, 409.

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

Metrics
  • PDF Downloads(17)
  • Abstract views(1362)
  • HTML views(217)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return