Citation: Zhao Qi, Tu Shu-Jiang, Jiang Bo. Hydrogen Radical Initiated 1, 2-Alkynyl Migration[J]. Acta Chimica Sinica, ;2019, 77(9): 927-931. doi: 10.6023/A19040151 shu

Hydrogen Radical Initiated 1, 2-Alkynyl Migration

  • Corresponding author: Tu Shu-Jiang, laotu@jsnu.edu.cn Jiang Bo, jiangchem@jsnu.edu.cn
  • Received Date: 30 April 2019
    Available Online: 21 September 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21871112) and the Qing Lan Project of Jiangsu Education Committee (No. QL2016006)the Qing Lan Project of Jiangsu Education Committee QL2016006the National Natural Science Foundation of China 21871112

Figures(3)

  • As inexpensive and readily available feedstocks, alkenes possess a unique reactivity profile and thus have been extensively applied in synthetic chemistry. Specifically, radical-triggered difunctionalization of alkenes provides a valuable synthetic strategy for their high utilization by incorporating two functional groups across the C=C π system. Despite the great achievements gained in this field, the vast majority of well-developed methods generally focus on activated alkenes, because its nascent alkyl radical needs to be stabilized by adjacent functional groups (e.g. aryl, carbonyl, heteroatom) via p-π conjugate effect. However, radical induced difunctionalization of unactivated alkenes remains elusive. Herein, a new protocol for Fe(Ⅲ) mediated hydroalkynylation of unactivated olefins is reported. By using the characteristics of the in-situ-generated hydrogen radical from the interaction of Fe(acac)3 and phenylsilane, hydrogen radical-triggered intramolecular 1, 2-alkynyl migration was realized in this reaction, which led to the synthesis of a series of α-alkynyl ketones with moderate to good yields. Based on the experimental results and literature reports, a reasonable reaction mechanism was proposed, which involved hydrogen radical addition, 3-exo-dig cyclization (anti-Baldwin rules) and C-C bond breaking/recombination. Moreover, the reaction features good tolerance of functional groups, in which estrone-derived 1, 4-enyne could be accommodated. A typical procedure for hydroalkynylation of unactivated alkenes is as follows:Fe(acac)3 (1.2 equiv., 0.24 mmol) and NaHCO3 (1.0 equiv., 0.2 mmol) are added to the 10-mL pressure tube. Then 1, 4-enynes (1.0 equiv., 0.2 mmol) and phenylsilane (2.0 equiv., 0.4 mmol) are dissolved in 1.0 mL ethyl alcohol, respectively. Both of them are injected into this vial. The reaction system was sealed and stirred at 100℃ until the 1, 4-enynes consumed that is determined by thin layer chromatography (TLC). After the reaction completes, the resulting mixture is extracted with EtOAc for three times, then the organic phase is concentrated and evaporated on a rotary evaporator. The residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate (V:V=75:1) as the eluent to afford α-alkynyl ketones.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      (a) Wu, X.; Wu, S.; Zhu, C. Tetrahedron Lett. 2018, 59, 1328; (b) Wu, X.; Zhu, C. Chin. J. Chem. 2019, 37, 171; (c) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654.

    4. [4]

      (a) Chen, Z.-M.; Bai, W.; Wang, S.-H.; Yang, B.-M.; Tu, Y.-Q.; Zhang, F.-M. Angew. Chem., Int. Ed. 2013, 52, 9781. (b) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962. (c) Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346. (d) Chen, Z.-M.; Zhang, Z.; Tu, Y.-Q.; Xu, M.-H.; Zhang, F.-M.; Li, C.-C.; Wang, S.-H. Chem. Commun. 2014, 50, 10805. (e) Chu, X.-Q.; Zi, Y.; Meng, H.; Xu, X.-P.; Ji, S.-J. Chem. Commun. 2014, 50, 7642. (f) Mi, X.; Wang, C.; Huang, M.; Wu, Y.; Wu, Y. Org. Biomol. Chem. 2014, 12, 8394. (g) Chu, X.-Q.; Meng, H.; Zi, Y.; Xu, X.-P.; Ji, S.-J. Chem. Commun. 2014, 50, 9718. (h) Li, Y.; Liu, B.; Li, H.-B.; Wang, Q.; Li, J.-H. Chem. Commun. 2015, 51, 1024. (i) Song, R.-J.; Tu, Y.-Q.; Zhu, D.-Y.; Zhang, F.-M.; Wang, S.-H. Chem. Commun. 2015, 51, 749. (j) Zhao, J.; Fang, H.; Song, R.; Zhou, J.; Han, J.; Pan, Y. Chem. Commun. 2015, 51, 599.

    5. [5]

      (a) Wu, Z.; Ren, R.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 10821. (b) Wang, N.; Li, L.; Li, Z.-L.; Yang, N.-Y.; Guo, Z.; Zhang, H.-X.; Liu, X.-Y. Org. Lett. 2016, 18, 6026. (c) Ji, M.; Wu, Z.; Yu, J.; Wan, X.; Zhu, C. Adv. Synth. Catal. 2017, 359, 1959. (d) Ren, R.; Wu, Z.; Huan, L.; Zhu, C. Adv. Synth. Catal. 2017, 359, 3052.

    6. [6]

    7. [7]

      Li, Z. L.; Li, X. H.; Wang, N.; Yang, N. Y.; Liu, X. Y. Angew. Chem., Int. Ed. 2016, 55, 15100.  doi: 10.1002/anie.201608198

    8. [8]

      (a) Wu, Z.; Wang, D.; Liu, Y.; Huan, L.; Zhu, C. J. Am. Chem. Soc. 2017, 139, 1388. (b) Gu, L. J.; Gao, Y.; Ai, X. H.; Jin, C.; He, Y. H.; Li, G. P.; Yuan, M. L. Chem. Commun. 2017, 53, 12946. (c) He, Y.; Wang, Y.; Gao, J.; Zeng, L.; Li, S.; Wang, W.; Zheng, X.; Zhang, S.; Gu, L.; Li, G. Chem. Commun. 2018, 54, 7499. (d) Wang, H.; Xu, Q.; Yu, S. Org. Chem. Front. 2018, 5, 2224. (e) Wang, M.; Wu, Z.; Zhang, B.; Zhu, C. Org. Chem. Front. 2018, 5, 1896. (f) Wei, X.-J.; No l, T. J. Org. Chem. 2018, 83, 11377. (g) Zhang, H.; Wu, X.; Zhao, Q.; Zhu, C. Chem.-Asian J. 2018, 13, 2453. (h) Zhang, W.; Zou, Z.; Wang, Y.; Wang, Y.; Liang, Y.; Wu, Z.; Zheng, Y.; Pan, Y. Angew. Chem., Int. Ed. 2019, 58, 624. (i) Zheng, M.-W.; Yuan, X.; Cui, Y.-S.; Qiu, J.-K.; Li, G.; Guo, K. Org. Lett. 2018, 20, 7784.

    9. [9]

      (a) Tang, X.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 814. (b) Gao, Y. Y.; Mei, H. B.; Han, J. L.; Pan, Y. Chem.-Eur. J. 2018, 24, 17205.

    10. [10]

      (a) Xu, Y.; Wu, Z.; Jiang, J.; Ke, Z.; Zhu, C. Angew. Chem., Int. Ed. 2017, 56, 4545. (b) Tang, X.; Studer, A. Chem. Sci. 2017, 8, 6888. (c) Liu, J.; Li, W. P.; Xie, J.; Zhu, C. J. Org. Chem. Front. 2018, 5, 797.

    11. [11]

      (a) Campbell, M. J.; Pohlhaus, P. D.; Min, G.; Ohmatsu, K.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 9180. (b) Alabugin, I. V.; Gilmore, K.; Manoharan, M. J. Am. Chem. Soc. 2011, 133, 12608.

    12. [12]

      Zhao, Q.; Ji, X.-S.; Gao, Y.-Y.; Hao, W.-J.; Zhang, K.-Y.; Tu, S.-J.; Jiang, B. Org. Lett. 2018, 20, 3596.  doi: 10.1021/acs.orglett.8b01382

    13. [13]

    14. [14]

    15. [15]

      (a) Bai, X.-Y.; Wang, Z.-X.; Li, B.-J. Angew. Chem., Int. Ed. 2016, 55, 9007. (b) Bai, X.-Y.; Zhang, W.-W.; Li, Q.; Li, B.-J. J. Am. Chem. Soc. 2018, 140, 506. (c) Chen, Y.; Wang, Z.-X.; Li, Q.; Xu, L.-J.; Li, B.-J. Org. Chem. Front. 2018, 5, 1815.

    16. [16]

      (a) Nishimura, T.; Katoh, T.; Takatsu, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 14158. (b) Shirakura, M.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 5060. (c) Canterbury, D. P.; Micalizio, G. C. J. Am. Chem. Soc. 2010, 132, 7602. (d) Avocetien, K. F.; Li, J. J.; Liu, X.; Wang, Y.; Xing, Y.; O'Doherty, G. A. Org. Lett. 2016, 18, 4970. (e) Teng, H.-L.; Ma, Y.; Zhan, G.; Nishiura, M.; Hou, Z. ACS Catal. 2018, 8, 4705.

    17. [17]

      Lo, J. C. L.; Gui, J. H.; Yabe, Y. K.; Pan, C. M.; Baran, P. S. Nature 2014, 516, 343.  doi: 10.1038/nature14006

    18. [18]

      (a) Lo, J. C.; Yabe, Y.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 1304. (b) Gui, J. H.; Pan, C. M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel, S. H.; Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt, M. A.; Darvatkar, N.; Natarajan, S. R.; Baran, P. S. Science 2015, 348, 886. (c) Dao, H. T.; Li, C.; Michaudel, Q.; Maxwell, B. D.; Baran, P. S. J. Am. Chem. Soc. 2015, 137, 8046. (d) Zheng, J.; Wang, D.; Cui, S. Org. Lett. 2015, 17, 4572. (e) Zheng, J.; Qi, J.; Cui, S. Org. Lett. 2016, 18, 128. (f) Shen, Y.; Qi, J.; Mao, Z.; Cui, S. Org. Lett. 2016, 18, 2722. (g) Qi, J.; Zheng, J.; Cui, S. Org. Chem. Front. 2018, 5, 222. (h) Qi, J.; Zheng, J.; Cui, S. Org. Lett. 2018, 20, 1355. (i) Deng, Z.; Chen, C.; Cui, S. RSC Adv. 2016, 6, 93753.

    19. [19]

      Shen, Y.; Huang, B.; Zheng, J.; Lin, C.; Liu, Y.; Cui, S. Org. Lett. 2017, 19, 1744.  doi: 10.1021/acs.orglett.7b00499

    20. [20]

      CCDC 1913020(3e) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

  • 加载中
    1. [1]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    5. [5]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    6. [6]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    7. [7]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    18. [18]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    19. [19]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(25)
  • Abstract views(2188)
  • HTML views(590)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return