Citation: Zhao Qi, Tu Shu-Jiang, Jiang Bo. Hydrogen Radical Initiated 1, 2-Alkynyl Migration[J]. Acta Chimica Sinica, ;2019, 77(9): 927-931. doi: 10.6023/A19040151 shu

Hydrogen Radical Initiated 1, 2-Alkynyl Migration

  • Corresponding author: Tu Shu-Jiang, laotu@jsnu.edu.cn Jiang Bo, jiangchem@jsnu.edu.cn
  • Received Date: 30 April 2019
    Available Online: 21 September 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21871112) and the Qing Lan Project of Jiangsu Education Committee (No. QL2016006)the Qing Lan Project of Jiangsu Education Committee QL2016006the National Natural Science Foundation of China 21871112

Figures(3)

  • As inexpensive and readily available feedstocks, alkenes possess a unique reactivity profile and thus have been extensively applied in synthetic chemistry. Specifically, radical-triggered difunctionalization of alkenes provides a valuable synthetic strategy for their high utilization by incorporating two functional groups across the C=C π system. Despite the great achievements gained in this field, the vast majority of well-developed methods generally focus on activated alkenes, because its nascent alkyl radical needs to be stabilized by adjacent functional groups (e.g. aryl, carbonyl, heteroatom) via p-π conjugate effect. However, radical induced difunctionalization of unactivated alkenes remains elusive. Herein, a new protocol for Fe(Ⅲ) mediated hydroalkynylation of unactivated olefins is reported. By using the characteristics of the in-situ-generated hydrogen radical from the interaction of Fe(acac)3 and phenylsilane, hydrogen radical-triggered intramolecular 1, 2-alkynyl migration was realized in this reaction, which led to the synthesis of a series of α-alkynyl ketones with moderate to good yields. Based on the experimental results and literature reports, a reasonable reaction mechanism was proposed, which involved hydrogen radical addition, 3-exo-dig cyclization (anti-Baldwin rules) and C-C bond breaking/recombination. Moreover, the reaction features good tolerance of functional groups, in which estrone-derived 1, 4-enyne could be accommodated. A typical procedure for hydroalkynylation of unactivated alkenes is as follows:Fe(acac)3 (1.2 equiv., 0.24 mmol) and NaHCO3 (1.0 equiv., 0.2 mmol) are added to the 10-mL pressure tube. Then 1, 4-enynes (1.0 equiv., 0.2 mmol) and phenylsilane (2.0 equiv., 0.4 mmol) are dissolved in 1.0 mL ethyl alcohol, respectively. Both of them are injected into this vial. The reaction system was sealed and stirred at 100℃ until the 1, 4-enynes consumed that is determined by thin layer chromatography (TLC). After the reaction completes, the resulting mixture is extracted with EtOAc for three times, then the organic phase is concentrated and evaporated on a rotary evaporator. The residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate (V:V=75:1) as the eluent to afford α-alkynyl ketones.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      (a) Wu, X.; Wu, S.; Zhu, C. Tetrahedron Lett. 2018, 59, 1328; (b) Wu, X.; Zhu, C. Chin. J. Chem. 2019, 37, 171; (c) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654.

    4. [4]

      (a) Chen, Z.-M.; Bai, W.; Wang, S.-H.; Yang, B.-M.; Tu, Y.-Q.; Zhang, F.-M. Angew. Chem., Int. Ed. 2013, 52, 9781. (b) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962. (c) Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346. (d) Chen, Z.-M.; Zhang, Z.; Tu, Y.-Q.; Xu, M.-H.; Zhang, F.-M.; Li, C.-C.; Wang, S.-H. Chem. Commun. 2014, 50, 10805. (e) Chu, X.-Q.; Zi, Y.; Meng, H.; Xu, X.-P.; Ji, S.-J. Chem. Commun. 2014, 50, 7642. (f) Mi, X.; Wang, C.; Huang, M.; Wu, Y.; Wu, Y. Org. Biomol. Chem. 2014, 12, 8394. (g) Chu, X.-Q.; Meng, H.; Zi, Y.; Xu, X.-P.; Ji, S.-J. Chem. Commun. 2014, 50, 9718. (h) Li, Y.; Liu, B.; Li, H.-B.; Wang, Q.; Li, J.-H. Chem. Commun. 2015, 51, 1024. (i) Song, R.-J.; Tu, Y.-Q.; Zhu, D.-Y.; Zhang, F.-M.; Wang, S.-H. Chem. Commun. 2015, 51, 749. (j) Zhao, J.; Fang, H.; Song, R.; Zhou, J.; Han, J.; Pan, Y. Chem. Commun. 2015, 51, 599.

    5. [5]

      (a) Wu, Z.; Ren, R.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 10821. (b) Wang, N.; Li, L.; Li, Z.-L.; Yang, N.-Y.; Guo, Z.; Zhang, H.-X.; Liu, X.-Y. Org. Lett. 2016, 18, 6026. (c) Ji, M.; Wu, Z.; Yu, J.; Wan, X.; Zhu, C. Adv. Synth. Catal. 2017, 359, 1959. (d) Ren, R.; Wu, Z.; Huan, L.; Zhu, C. Adv. Synth. Catal. 2017, 359, 3052.

    6. [6]

    7. [7]

      Li, Z. L.; Li, X. H.; Wang, N.; Yang, N. Y.; Liu, X. Y. Angew. Chem., Int. Ed. 2016, 55, 15100.  doi: 10.1002/anie.201608198

    8. [8]

      (a) Wu, Z.; Wang, D.; Liu, Y.; Huan, L.; Zhu, C. J. Am. Chem. Soc. 2017, 139, 1388. (b) Gu, L. J.; Gao, Y.; Ai, X. H.; Jin, C.; He, Y. H.; Li, G. P.; Yuan, M. L. Chem. Commun. 2017, 53, 12946. (c) He, Y.; Wang, Y.; Gao, J.; Zeng, L.; Li, S.; Wang, W.; Zheng, X.; Zhang, S.; Gu, L.; Li, G. Chem. Commun. 2018, 54, 7499. (d) Wang, H.; Xu, Q.; Yu, S. Org. Chem. Front. 2018, 5, 2224. (e) Wang, M.; Wu, Z.; Zhang, B.; Zhu, C. Org. Chem. Front. 2018, 5, 1896. (f) Wei, X.-J.; No l, T. J. Org. Chem. 2018, 83, 11377. (g) Zhang, H.; Wu, X.; Zhao, Q.; Zhu, C. Chem.-Asian J. 2018, 13, 2453. (h) Zhang, W.; Zou, Z.; Wang, Y.; Wang, Y.; Liang, Y.; Wu, Z.; Zheng, Y.; Pan, Y. Angew. Chem., Int. Ed. 2019, 58, 624. (i) Zheng, M.-W.; Yuan, X.; Cui, Y.-S.; Qiu, J.-K.; Li, G.; Guo, K. Org. Lett. 2018, 20, 7784.

    9. [9]

      (a) Tang, X.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 814. (b) Gao, Y. Y.; Mei, H. B.; Han, J. L.; Pan, Y. Chem.-Eur. J. 2018, 24, 17205.

    10. [10]

      (a) Xu, Y.; Wu, Z.; Jiang, J.; Ke, Z.; Zhu, C. Angew. Chem., Int. Ed. 2017, 56, 4545. (b) Tang, X.; Studer, A. Chem. Sci. 2017, 8, 6888. (c) Liu, J.; Li, W. P.; Xie, J.; Zhu, C. J. Org. Chem. Front. 2018, 5, 797.

    11. [11]

      (a) Campbell, M. J.; Pohlhaus, P. D.; Min, G.; Ohmatsu, K.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 9180. (b) Alabugin, I. V.; Gilmore, K.; Manoharan, M. J. Am. Chem. Soc. 2011, 133, 12608.

    12. [12]

      Zhao, Q.; Ji, X.-S.; Gao, Y.-Y.; Hao, W.-J.; Zhang, K.-Y.; Tu, S.-J.; Jiang, B. Org. Lett. 2018, 20, 3596.  doi: 10.1021/acs.orglett.8b01382

    13. [13]

    14. [14]

    15. [15]

      (a) Bai, X.-Y.; Wang, Z.-X.; Li, B.-J. Angew. Chem., Int. Ed. 2016, 55, 9007. (b) Bai, X.-Y.; Zhang, W.-W.; Li, Q.; Li, B.-J. J. Am. Chem. Soc. 2018, 140, 506. (c) Chen, Y.; Wang, Z.-X.; Li, Q.; Xu, L.-J.; Li, B.-J. Org. Chem. Front. 2018, 5, 1815.

    16. [16]

      (a) Nishimura, T.; Katoh, T.; Takatsu, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 14158. (b) Shirakura, M.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 5060. (c) Canterbury, D. P.; Micalizio, G. C. J. Am. Chem. Soc. 2010, 132, 7602. (d) Avocetien, K. F.; Li, J. J.; Liu, X.; Wang, Y.; Xing, Y.; O'Doherty, G. A. Org. Lett. 2016, 18, 4970. (e) Teng, H.-L.; Ma, Y.; Zhan, G.; Nishiura, M.; Hou, Z. ACS Catal. 2018, 8, 4705.

    17. [17]

      Lo, J. C. L.; Gui, J. H.; Yabe, Y. K.; Pan, C. M.; Baran, P. S. Nature 2014, 516, 343.  doi: 10.1038/nature14006

    18. [18]

      (a) Lo, J. C.; Yabe, Y.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 1304. (b) Gui, J. H.; Pan, C. M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel, S. H.; Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt, M. A.; Darvatkar, N.; Natarajan, S. R.; Baran, P. S. Science 2015, 348, 886. (c) Dao, H. T.; Li, C.; Michaudel, Q.; Maxwell, B. D.; Baran, P. S. J. Am. Chem. Soc. 2015, 137, 8046. (d) Zheng, J.; Wang, D.; Cui, S. Org. Lett. 2015, 17, 4572. (e) Zheng, J.; Qi, J.; Cui, S. Org. Lett. 2016, 18, 128. (f) Shen, Y.; Qi, J.; Mao, Z.; Cui, S. Org. Lett. 2016, 18, 2722. (g) Qi, J.; Zheng, J.; Cui, S. Org. Chem. Front. 2018, 5, 222. (h) Qi, J.; Zheng, J.; Cui, S. Org. Lett. 2018, 20, 1355. (i) Deng, Z.; Chen, C.; Cui, S. RSC Adv. 2016, 6, 93753.

    19. [19]

      Shen, Y.; Huang, B.; Zheng, J.; Lin, C.; Liu, Y.; Cui, S. Org. Lett. 2017, 19, 1744.  doi: 10.1021/acs.orglett.7b00499

    20. [20]

      CCDC 1913020(3e) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

  • 加载中
    1. [1]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    13. [13]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    14. [14]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    20. [20]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

Metrics
  • PDF Downloads(25)
  • Abstract views(2153)
  • HTML views(585)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return