Citation: Qi Qige, Yang Chunfan, Xia Ye, Liu Kunhui, Su Hongmei. Photo-induced Electron Transfer between 4-Thiouracil and Tryptophan[J]. Acta Chimica Sinica, ;2019, 77(6): 515-519. doi: 10.6023/A19040149 shu

Photo-induced Electron Transfer between 4-Thiouracil and Tryptophan

  • Corresponding author: Yang Chunfan, yangchunfan@bnu.edu.cn Su Hongmei, hongmei@bnu.edu.cn
  • Received Date: 29 April 2019
    Available Online: 22 June 2019

    Fund Project: the National Natural Science Foundation of China 21727803the National Natural Science Foundation of China 21425313Project supported by the National Natural Science Foundation of China (Nos. 21425313, 21727803, 21703011)the National Natural Science Foundation of China 21703011

Figures(6)

  • RNA-protein interactions are inevitably existing in many fundamental biological processes of organisms and it is an effective method to investigate the nature of RNA-protein interactions through crosslinking induced by photoactivation. Therefore, it is of great importance to detect the crucial transient intermediates to elucidate the mechanism of photo crosslinking between RNA and proteins, which will shed light on regulating the crosslinking sites as well as the favorable cross-linked amino acids. In this research, we choose the photoactivatable ribonucleotide analog, 4-thiouracil, and the aromatic amino acid, tryptophan, as a model system to study, from which the photo crosslinking is found to be initiated by the electron transfer as the first step. By means of the nanosecond time-resolved laser flash photolysis, the key intermediates of photo-induced electron transfer from tryptophan to the triplet of 4-thiouracil, 4-thiouracil anion radical (4-TU·-)and tryptophan cation radical (TrpH·+) are observed, as well as the deprotonated species of tryptophan neutral radical (Trp·). By monitoring the 4-TU triplet decay kinetics, the pseudo-first order rate constant of photo-induced electron transfer is determined to be 2.88×109 L·mol-1·s-1 and found to be diffusion-controlled. The pH-effect on the electron transfer and proton transfer have been further examined. In addition, the driving force for electron transfer from tryptophan to 4-TU triplet is estimated using the classic Rehm-Weller empirical equation to be -0.15 eV, which means the photo-induced electron transfer process is favorable thermodynamically. These results demonstrate that photo-induced electron transfer between 4-thiouracil triplet and tryptophan is the key step, which can trigger the following proton transfer and radical coupling processes and lead to the covalent photoadducts. These studies provide a basis for mechanistic understandings of photo crosslinking between RNA and proteins in more complex system.
  • 加载中
    1. [1]

      Lin, R. J. RNA-Protein Interaction Protocols, Humana Press, Totowa, USA, 2008, p. 85.

    2. [2]

      Ule, J.; Jensen, K. B.; Ruggiu, M.; Mele, A.; Ule, A.; Darnell, R. B. Science 2003, 302, 1212.  doi: 10.1126/science.1090095

    3. [3]

      Licatalosi, D. D.; Mele, A.; Fak, J. J.; Ule, J.; Kayikci, M.; Chi, S. W.; Clark, T. A.; Schweitzer, A. C.; Blume, J. E.; Wang, X.; Dar-nell, J. C.; Darnell, R. B. Nature 2008, 456, 464.  doi: 10.1038/nature07488

    4. [4]

      Kishore, S.; Jaskiewicz, L.; Burger, L.; Hausser, J.; Khorshid, M.; Zavolan, M. Nat. Methods 2011, 8, 559.  doi: 10.1038/nmeth.1608

    5. [5]

      Hafner, M.; Landthaler, M.; Burger, L.; Khorshid, M.; Hausser, J.; Berninger, P.; Rothballer, A.; Ascano, M. Jr.; Jungkamp, A. C.; Munschauer, M.; Ulrich, A.; Wardle, G. S.; Dewell, S.; Zavolan, M.; Tuschl, T. Cell 2010, 141, 129.  doi: 10.1016/j.cell.2010.03.009

    6. [6]

      Ascano, M.; Hafner, M.; Cekan, P.; Gerstberger, S.; Tuschl, T. WIRES RNA 2012, 3, 159.  doi: 10.1002/wrna.v3.2

    7. [7]

      Kstharina, K.; Timo, S.; Benedikt, M. B.; Saadia, Q.; Kum, L. B.; Matthias, W. H.; Oliver, K.; Urlaub, H. Nat. Methods 2014, 11, 1064.  doi: 10.1038/nmeth.3092

    8. [8]

      Zhou, D. J.; Ye, K. Q. Chin. Bull. Life Sci. 2014, 26, 207(in Chinese).

    9. [9]

      Favre, A.; Saintome, C.; Fourrey, J. L.; Clivio, P.; Laugaa, P. J. Photochem. Photobiol. B-Biol. 1998, 42, 109.  doi: 10.1016/S1011-1344(97)00116-4

    10. [10]

      Shalitin, N.; Feitelson, J. Biochemistry 1976, 15, 2092.  doi: 10.1021/bi00655a010

    11. [11]

      Zou, X. R.; Dai, X. J.; Liu, K. H.; Zhao, H. M.; Song, D.; Su, H. M. J. Phys. Chem. B 2014, 118, 5864.  doi: 10.1021/jp501658a

    12. [12]

      Milder, S. J.; Kliger, D. S. J. Am. Chem. Soc. 1985, 107, 7365.  doi: 10.1021/ja00311a025

    13. [13]

      Khvorostov, A.; Lapinski, L.; Rostkowska, H.; Nowak, M. J. Photochem. Photobiol. 2005, 81, 1205.  doi: 10.1562/2005-05-19-RA-534

    14. [14]

      Gagliardi, C. J.; Binstead, R. A.; Thorp, H. H.; Meyer, T. J. J. Am. Chem. Soc. 2011, 133, 19594.  doi: 10.1021/ja207379n

    15. [15]

      Zhang, M. T.; Hammarström, L. J. Am. Chem. Soc. 2011, 133, 8806.  doi: 10.1021/ja201536b

    16. [16]

      Miller, J. E.; Gradinaru, C.; Crane, B. R.; Di Bilio, A. J.; Wehbi, W. A.; Un, S.; Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc. 2003, 125, 14220.  doi: 10.1021/ja037203i

    17. [17]

      Lassmann, G.; Lendzian, F.; MacMillian, F.; Bittl, R.; Potsch, S.; Sahlin, M.; Sjoberg, B. M.; Graslund, A.; Lubitz, W. FASEB J. 1997, 11, A882.

    18. [18]

      Solar, S.; Getoff, N.; Surdhar, P. S.; Armstrong, D. A.; Singh, A. J. Phys. Chem. 1991, 95, 3639.  doi: 10.1021/j100162a038

    19. [19]

      Katharina, K.; Petra, H.; He, H. H.; Xiao, L.; Markus, W.; Urlaub, H. Int. J. Mass Spectrom. 2011, 304, 184.  doi: 10.1016/j.ijms.2010.10.009

    20. [20]

      Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259.  doi: 10.1002/ijch.v8.2

    21. [21]

      Holzer, K. P.; Wrona, Z. Bioelectrochem. Bioenerg. 1983, 11, 3.  doi: 10.1016/0302-4598(83)85096-X

    22. [22]

      Wrona, Z.; Czochralska, B.; Shugar, D. J. Electroanal. Chem. 1976, 68, 355.  doi: 10.1016/S0022-0728(76)80275-6

    23. [23]

      Sjödin, M.; Styring, S.; Åkermark, B.; Sun, L. C.; Hammarström, L. J. Am. Chem. Soc. 2000, 122, 3932.  doi: 10.1021/ja993044k

    24. [24]

      Tsentalovich, Y. P.; Lopez, J. J.; Hore, P. J.; Sagdeev, R. Z. Spectrochim. Acta, Part A 2002, 58, 2043.  doi: 10.1016/S1386-1425(01)00652-7

    25. [25]

      Psoda, A.; Kazimierczuk, Z.; Shugar, D. J. Am. Chem. Soc. 1974, 96, 6832.  doi: 10.1021/ja00829a003

    26. [26]

      Cardoso, D. R.; Franco, D. W.; Olsen, K.; Andersen, M. L.; Skibsted, L. H. J. Agric. Food Chem. 2004, 52, 6602.  doi: 10.1021/jf0401165

    27. [27]

      Heelis, P. F.; Parsons, B. J.; Phillips, G. O. Biochim. Biophys. Acta 1979, 587, 455.  doi: 10.1016/0304-4165(79)90449-5

    28. [28]

      Sjödin, M.; Styring, S.; Wolpher, H.; Xu, Y.; Sun, L.; Ham-marström, L. J. Am. Chem. Soc. 2005, 127, 3855.  doi: 10.1021/ja044395o

    29. [29]

      Wu, L. D.; Jie, J. L.; Liu, K. H.; Su, H. M. Acta Chim. Sinica 2014, 72, 1182(in Chinese).
       

  • 加载中
    1. [1]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    2. [2]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    3. [3]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    5. [5]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    7. [7]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    10. [10]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    11. [11]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    12. [12]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    15. [15]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    16. [16]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    17. [17]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    20. [20]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

Metrics
  • PDF Downloads(10)
  • Abstract views(1039)
  • HTML views(159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return