Citation: Cheng Jie, Wang Peilong, Su Xiaoou. Recent Progress on the Detection of Dioxins Based on Surface-enhanced Raman Spectroscopy[J]. Acta Chimica Sinica, ;2019, 77(10): 977-983. doi: 10.6023/A19040139 shu

Recent Progress on the Detection of Dioxins Based on Surface-enhanced Raman Spectroscopy

  • Corresponding author: Wang Peilong, wplcon99@163.com Su Xiaoou, suxiaoou@caas.cn
  • Received Date: 22 April 2019
    Available Online: 5 October 2019

    Fund Project: the Fundamental Research Funds for Central Non-profit Scientific Institution, Chinese Academy of Agricultural Sciences 1610072017006Project supported by the 13th five-year development plan of China by the National Key Research and Development Program (No. 2017YFC1600301) and the Fundamental Research Funds for Central Non-profit Scientific Institution, Chinese Academy of Agricultural Sciences (No. 1610072017006)the 13th five-year development plan of China by the National Key Research and Development Program 2017YFC1600301

Figures(5)

  • Persistent Organic Pollutants (POPs), represented by dioxins and dioxin-like polychlorinated biphenyls have the property of teratogenic, carcinogenic and mutagenic, which have been classified as Group A human carcinogen by the international agency for research on cancer (IARC) and put into the initial list of Stockholm Convention managed by the United Nations Environment Program. POPs have posed a threat and impact on food security through the food chain from environment. The conventional detection methods, such as liquid chromatography-tandem mass spectrometry, high resolution gas chromatography-mass spectrometry and two-dimensional gas chromatography with time-of-flight mass spectrometry are sufficiently accurate, but fail to meet the requirements of on-site detection. Meanwhile, the rapid testing technologies for PCBs mainly included fluorescence detection, electrochemical sensors, and so on. As a new type of rapid detection technology, Surface-enhanced Raman Spectroscopy (SERS) has attracted significant attention as a promising analytical technique. With its ultra-sensitivity, high speed detection, ease of operation, SERS is particularly well-suited for the rapid detection of POPs. However, the multiple molecules in matrices may generate interfering Raman signals via competitive adsorption with the target compound on the substrate surface in the SERS detection of real samples. In addition, reproducibility represents a major bottleneck for the widespread application of SERS. Metal nanoparticle colloids are widely used as SERS substrates due to the hot spots formed between the nanoparticles. However, metal nanoparticle aggregation in colloidal solutions is difficult to control, leading to the random formation of hot spots. When the target POPs exist near the hot spots, the intensities of the enhanced Raman signals were unstable. Other factors influenced by the chemical adsorption such as vibration, charge transfer, and the deformation or distortion of molecules also affect the Raman signals. In the review, we provide an overview of the recent advances in SERS for POPs determination, especially the different types of enhanced substrates. And several key technical points of SERS detection including sensitivity, selectivity, and reproducibility have been summarized. Finally, the development of SERS for POPs detection in the future are proposed.
  • 加载中
    1. [1]

      Cammilleri, G.; Calvaruso, E.; Pantano, L; Cascio, G. L.; Randisi, B.; Macaluso, A.; Vazzana, M.; Caracappa, G.; Giangrosso, G.; Vella, A.; Ferrantelli, V. Environ. Toxicol. Chem. 2017, 36, 2997.  doi: 10.1002/etc.3866

    2. [2]

      Adam, T. S. G.; Christoph, A.; Craig, A. B.; Barry, C. P. Mar. Pollut. Bull. 2017, 120, 414.  doi: 10.1016/j.marpolbul.2017.05.001

    3. [3]

      Jamieson, A. J.; Malkocs, T.; Piertney, S.; Fujii, T.; Zhang, Z. L. Nat. Ecol. Evol. 2017, 0051.

    4. [4]

      Matuszak, M.; Minorczyk, M.; Góralczyk, K.; Hernik, A.; Struciński, P.; Liszewska, M.; Czaja, K.; Korcz, W.; Łyczewska, M.; Ludwicki, J. K. Rocz Panstw Zakl Hig. 2016, 67, 113.

    5. [5]

      Lv, F.; Gan, N.; Cao, Y.; Zhou, Y.; Zuo, Y.; Dong, Y. J. Chromatogr. A 2017, 1525, 42.  doi: 10.1016/j.chroma.2017.10.026

    6. [6]

      United States Environmental Protection Agency, 2010, Method 1678C.

    7. [7]

      Xia, D.; Gao, L.; Zheng, M.; Wang, S.; Liu, G. Anal. Chim. Acta 2016, 937, 160.  doi: 10.1016/j.aca.2016.07.018

    8. [8]

      Dam, G. T.; Pussente, I. C.; Scholl, G.; Eppe, G.; Schaechtele, A.; Leeuwen, S. V. J. Chromatogr. A 2016, 1477, 76.  doi: 10.1016/j.chroma.2016.11.035

    9. [9]

      Li, W.; Liu, D.; Li, J.; Gao, J.; Zhang, C.; Wang, P.; Zhou, Z. Chromatographia 2017, 80, 813.  doi: 10.1007/s10337-017-3282-6

    10. [10]

      Nebert, D. W. G.; Goujon, F.; Gielen, J. Nature 1972, 236, 107.

    11. [11]

      Commission Directive 2002/69/EC. Official J. Eur. Communities 2002a.

    12. [12]

      Levy, W.; Brena, B. M.; Henkelmann, B.; Bernhöft, S.; Pirez, M.; González-Sapienza, G.; Schramm, K. W. Toxicol. in Vitro 2014, 28, 1036.  doi: 10.1016/j.tiv.2014.04.009

    13. [13]

      Crump, D.; Farhat, A.; Chiu, S.; Williams, K. L.; Jones, S. P.; Langlois, V. S. Environ. Sci. Technol. 2016, 50, 3265.  doi: 10.1021/acs.est.5b06181

    14. [14]

      Urbaniak, M.; Tygielska, A.; Krauze, K. Plos One 2016, 11, e0151756.  doi: 10.1371/journal.pone.0151756

    15. [15]

      Ching, L.; Eric, B.; James, L.; Zhang, W. Anal. Bioanal. Chem. 2016, 408, 1095.  doi: 10.1007/s00216-015-9205-1

    16. [16]

      Babikian, S.; Li, G. P.; Bachman, M. IEEE Transactions on Components 2017, 7, 846.

    17. [17]

      Yang, G.; Zhuang, H.; Chen, H.; Ping, X.; Bu, D. Sens. Actuators B 2015, 214, 152.  doi: 10.1016/j.snb.2015.02.128

    18. [18]

      Zheng, X.; Li, H.; Xia, F.; Tian, D.; Hua, X.; Qiao, X.; Zhou, C. Electrochim. Acta 2016, 194, 413.  doi: 10.1016/j.electacta.2016.02.115

    19. [19]

      Moskovits, M. J. Chem. Phys. 1982, 77, 4408.

    20. [20]

      Ruchita, S.; Agrawal, Y. K. Vib. Spectrosc. 2011, 57, 163.  doi: 10.1016/j.vibspec.2011.08.003

    21. [21]

      Liang, H. Y.; Li, Z. P.; Wang, W. Z.; Wu, Y. S.; Xu, H. X. Adv. Mater. 2009, 21, 4614.  doi: 10.1002/adma.200901139

    22. [22]

      Wang, X. S.; Yang, D. P.; Huang, P.; Li, M.; Chen, D.; Cui, D. X. Nanoscale 2012, 24, 7766.

    23. [23]

      Wang, P.; Wu, L.; Lu, Z. C.; Li, Q.; Yin, W. M.; Ding, F.; Han, H. Y. Anal. Chem. 2017, 89, 2424.  doi: 10.1021/acs.analchem.6b04324

    24. [24]

      Zhang, B.; Xu, P.; Xie, X. M.; Wei, H.; Li, Z. P.; Mack, N. H.; Han, X. J.; Xu, H. X.; Wang, H. L. J. Mater. Chem. 2011, 21, 2495.  doi: 10.1039/C0JM02837A

    25. [25]

      Panneerselvam, R.; Liu, G. K.; Wang, Y. H.; Liu, J. Y.; Ding, S. Y.; Li, J. F.; Wu, D. Y.; Tian, Z. Q. Chem. Commun. 2018, 54, 10.  doi: 10.1039/C7CC05979E

    26. [26]

      Xu, W. G.; Mao, N. N.; Zhang, J. Small 2013, 8, 1206.

    27. [27]

      Cheng, J.; Su, X. O.; Han, C. Q.; Wang, S.; Wang, P. L.; Zhang, S.; Xie, J. C. Sens. Actuators B 2018, 255, 2329.  doi: 10.1016/j.snb.2017.09.047

    28. [28]

      Cheng, J.; Zhang, S.; Wang, S.; Wang, P. L.; Su, X. O.; Xie, J. C. Food Chem. 2019, 276, 157.  doi: 10.1016/j.foodchem.2018.10.004

    29. [29]

      Yao, Y.; Wang, W.; Tian, K. Z.; Ingram, W. M.; Cheng, J.; Qu, L. L.; Li, H. T.; Han, C. Q. Spectrochim. Acta A 2018, 195, 165.  doi: 10.1016/j.saa.2018.01.072

    30. [30]

      Cheng, J.; Su, X. O.; Yao, Y.; Han, C. Q.; Wang, S.; Zhao, Y. P. Plos one 2016, 11, e0154402.  doi: 10.1371/journal.pone.0154402

    31. [31]

      Han, C. Q.; Chen, J.; Wu, X. M.; Huang, Y. W. Talanta 2014, 128, 293.  doi: 10.1016/j.talanta.2014.04.083

    32. [32]

      Patricia, T. B.; Niklaas, J. B.; Laura, R. L.; Jorge, P. J.; Luis, M. L. M.; Pablo, H. J. Mater. Chem. 2011, 21, 16880.  doi: 10.1039/c1jm12175h

    33. [33]

      Bonyár, A.; Csarnovics, I.; Veres, M.; Himics, L.; Csik, A.; Kámán, J.; Balázs, L.; Kökényesi, S. Sens. Actuators B 2018, 255, 433.  doi: 10.1016/j.snb.2017.08.063

    34. [34]

      Feng, J. Y.; Hu, Y. X.; Grant, E.; Lu, X. Food Chem. 2018, 239, 816.  doi: 10.1016/j.foodchem.2017.07.014

    35. [35]

      Zhao, B. W.; Feng, S. L.; Hu, Y. X.; Wang, S.; Lu, X. N. Food Chem. 2019, 276, 366.  doi: 10.1016/j.foodchem.2018.10.036

    36. [36]

      Fu, C. C.; Wang, Y.; Chen, G.; Yang, L. Y.; Xu, S. P.; Xu, W. Q. Anal. Chem. 2015, 87, 9555.  doi: 10.1021/acs.analchem.5b02508

    37. [37]

      Sun, K.; Huang, Q.; Meng, G. W.; Lu, Y. L. ACS Appl. Mater. Interfaces 2016, 8, 5723.  doi: 10.1021/acsami.5b12866

    38. [38]

      Lopez, A.; Lovato, F.; Oh, S. H.; Lai, Y. H.; Filbrun, S.; Driskell, E. A.; Driskell, J. D. Talanta 2016, 146, 388.  doi: 10.1016/j.talanta.2015.08.065

    39. [39]

      Zhang, M.; Zhang, X.; Shi, Y.; Liu, Z.; Zhan, J. Talanta 2016, 158, 322.  doi: 10.1016/j.talanta.2016.05.069

    40. [40]

      Chen, Y.; Zhang, Y.; Pan, F.; Liu, J.; Wang, K.; Zhang, C.; Cheng, S.; Lu, L.; Zhang, W.; Zhang, Z.; Zhi, X.; Zhang, Q.; Alfranca, G.; De la Fuente, J. M.; Chen, D.; Cui, D. ACS Nano 2016, 10, 8169.  doi: 10.1021/acsnano.6b01441

    41. [41]

      Li, B.; Shi, Y.; Cui, J.; Liu, Z.; Zhang, X.; Zhan, J. Anal. Chim. Acta 2016, 923, 66.  doi: 10.1016/j.aca.2016.04.002

    42. [42]

      Fang, F.; Qi, Y.; Lu, F.; Yang, L. Talanta 2016, 146, 351.  doi: 10.1016/j.talanta.2015.08.067

    43. [43]

      Tang, H. B.; Meng, G. W.; Huang, Q.; Zhang, Z.; Huang, Z. L.; Zhu, C. H. Adv. Funct. Mater. 2012, 22, 218.  doi: 10.1002/adfm.201102274

    44. [44]

      Li, Z. B.; Meng, G. W.; Huang, Q.; Hu, X. Y.; He, X.; Tang, H. B.; Wang, Z. W.; Li, F. D. Small 2015, 40, 5452

    45. [45]

      Bantz, K. C.; Haynes, C. L. Vib. Spectrosc. 2009, 50, 29.  doi: 10.1016/j.vibspec.2008.07.006

    46. [46]

      Lu, Y. L.; Yao, G. H.; Sun, K. X.; Huang, Q. Phys. Chem. Chem. Phys. 2015, 17, 21149.  doi: 10.1039/C4CP04904G

    47. [47]

      Zhu, C.; Meng, G. W.; Huang, Q.; Li, Z. B.; Huang, Z. L.; Wang, M. L.; Yuan, J. P. J. Mater Chem. 2012, 22, 2271.  doi: 10.1039/C2JM14823D

    48. [48]

      Arocikia, J. D.; Parimaladevi, R.; Vasant, S. G.; Umadevi, M. J. Clust. Sci. 2018, 29, 281.  doi: 10.1007/s10876-017-1323-9

    49. [49]

      Shanta, P. V.; Cheng, Q. ACS Sensors 2017, 6, 817.

    50. [50]

      Jency, D. A.; Umadevi, M.; Sathe, G. V. J. Raman Spectrosc. 2015, 46, 377.  doi: 10.1002/jrs.4654

    51. [51]

      Xu, W.; Meng, G. W., Huang, Q.; Hu, X. Y.; Huang, Z. L.; Tang, H. B.; Zhang, J. X. Appl. Surf. Sci. 2013, 271, 125.  doi: 10.1016/j.apsusc.2013.01.144

    52. [52]

      Lu, Y. L.; Huang, Q.; Meng, G. W.; Wu, L. J.; Zhang, J. J. Analyst 2014, 139, 3083.  doi: 10.1039/c4an00197d

    53. [53]

      Zhang, C. Y.; Hao, R.; Fu, Y. Z.; Zhang, H.; Moeendarbari, J. S.; Peckering, C. S.; Hao, Y. W.; Liu, Y. Q. Appl. Surf. Sci. 2017, 400, 49.  doi: 10.1016/j.apsusc.2016.12.161

    54. [54]

      Rindzevicius, T.; Barten, J.; Vorobiev, M.; Schmidt, M. S.; Castillo, J. J.; Boisen, A. Vib. Spectrosc. 2017, 90, 1.  doi: 10.1016/j.vibspec.2017.02.004

    55. [55]

      Jiao, C. L.; Wang, W.; Liu, J.; Yuan, Y. X.; Xu, M. M.; Yao, J. L. Acta Chim. Sinica 2018, 76, 526.
       

    56. [56]

      Liu, J.; Sun, H. L.; Yin, L.; Yuan, Y. X.; Xu, M. M.; Yao, J. L. Acta Chim. Sinica 2019, 77, 257.  doi: 10.3866/PKU.WHXB201803191
       

    57. [57]

      Jia, F. L.; Liu, J.; Zhang, L. Z. Acta Chim. Sinica 2017, 75, 602.  doi: 10.3866/PKU.WHXB201611251
       

    58. [58]

      Commission Directive 277/2012/EC. Official J. Eur. Communities 2012.

    59. [59]

      National standards of the People's Republic of China, GB/T 2762-2017.

    60. [60]

      National standards of the People's Republic of China, GB/T 13078-2017.

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    5. [5]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    6. [6]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    7. [7]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    8. [8]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    9. [9]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    10. [10]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    14. [14]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

Metrics
  • PDF Downloads(33)
  • Abstract views(1972)
  • HTML views(308)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return