Citation: Cheng Jie, Wang Peilong, Su Xiaoou. Recent Progress on the Detection of Dioxins Based on Surface-enhanced Raman Spectroscopy[J]. Acta Chimica Sinica, ;2019, 77(10): 977-983. doi: 10.6023/A19040139 shu

Recent Progress on the Detection of Dioxins Based on Surface-enhanced Raman Spectroscopy

  • Corresponding author: Wang Peilong, wplcon99@163.com Su Xiaoou, suxiaoou@caas.cn
  • Received Date: 22 April 2019
    Available Online: 5 October 2019

    Fund Project: the Fundamental Research Funds for Central Non-profit Scientific Institution, Chinese Academy of Agricultural Sciences 1610072017006Project supported by the 13th five-year development plan of China by the National Key Research and Development Program (No. 2017YFC1600301) and the Fundamental Research Funds for Central Non-profit Scientific Institution, Chinese Academy of Agricultural Sciences (No. 1610072017006)the 13th five-year development plan of China by the National Key Research and Development Program 2017YFC1600301

Figures(5)

  • Persistent Organic Pollutants (POPs), represented by dioxins and dioxin-like polychlorinated biphenyls have the property of teratogenic, carcinogenic and mutagenic, which have been classified as Group A human carcinogen by the international agency for research on cancer (IARC) and put into the initial list of Stockholm Convention managed by the United Nations Environment Program. POPs have posed a threat and impact on food security through the food chain from environment. The conventional detection methods, such as liquid chromatography-tandem mass spectrometry, high resolution gas chromatography-mass spectrometry and two-dimensional gas chromatography with time-of-flight mass spectrometry are sufficiently accurate, but fail to meet the requirements of on-site detection. Meanwhile, the rapid testing technologies for PCBs mainly included fluorescence detection, electrochemical sensors, and so on. As a new type of rapid detection technology, Surface-enhanced Raman Spectroscopy (SERS) has attracted significant attention as a promising analytical technique. With its ultra-sensitivity, high speed detection, ease of operation, SERS is particularly well-suited for the rapid detection of POPs. However, the multiple molecules in matrices may generate interfering Raman signals via competitive adsorption with the target compound on the substrate surface in the SERS detection of real samples. In addition, reproducibility represents a major bottleneck for the widespread application of SERS. Metal nanoparticle colloids are widely used as SERS substrates due to the hot spots formed between the nanoparticles. However, metal nanoparticle aggregation in colloidal solutions is difficult to control, leading to the random formation of hot spots. When the target POPs exist near the hot spots, the intensities of the enhanced Raman signals were unstable. Other factors influenced by the chemical adsorption such as vibration, charge transfer, and the deformation or distortion of molecules also affect the Raman signals. In the review, we provide an overview of the recent advances in SERS for POPs determination, especially the different types of enhanced substrates. And several key technical points of SERS detection including sensitivity, selectivity, and reproducibility have been summarized. Finally, the development of SERS for POPs detection in the future are proposed.
  • 加载中
    1. [1]

      Cammilleri, G.; Calvaruso, E.; Pantano, L; Cascio, G. L.; Randisi, B.; Macaluso, A.; Vazzana, M.; Caracappa, G.; Giangrosso, G.; Vella, A.; Ferrantelli, V. Environ. Toxicol. Chem. 2017, 36, 2997.  doi: 10.1002/etc.3866

    2. [2]

      Adam, T. S. G.; Christoph, A.; Craig, A. B.; Barry, C. P. Mar. Pollut. Bull. 2017, 120, 414.  doi: 10.1016/j.marpolbul.2017.05.001

    3. [3]

      Jamieson, A. J.; Malkocs, T.; Piertney, S.; Fujii, T.; Zhang, Z. L. Nat. Ecol. Evol. 2017, 0051.

    4. [4]

      Matuszak, M.; Minorczyk, M.; Góralczyk, K.; Hernik, A.; Struciński, P.; Liszewska, M.; Czaja, K.; Korcz, W.; Łyczewska, M.; Ludwicki, J. K. Rocz Panstw Zakl Hig. 2016, 67, 113.

    5. [5]

      Lv, F.; Gan, N.; Cao, Y.; Zhou, Y.; Zuo, Y.; Dong, Y. J. Chromatogr. A 2017, 1525, 42.  doi: 10.1016/j.chroma.2017.10.026

    6. [6]

      United States Environmental Protection Agency, 2010, Method 1678C.

    7. [7]

      Xia, D.; Gao, L.; Zheng, M.; Wang, S.; Liu, G. Anal. Chim. Acta 2016, 937, 160.  doi: 10.1016/j.aca.2016.07.018

    8. [8]

      Dam, G. T.; Pussente, I. C.; Scholl, G.; Eppe, G.; Schaechtele, A.; Leeuwen, S. V. J. Chromatogr. A 2016, 1477, 76.  doi: 10.1016/j.chroma.2016.11.035

    9. [9]

      Li, W.; Liu, D.; Li, J.; Gao, J.; Zhang, C.; Wang, P.; Zhou, Z. Chromatographia 2017, 80, 813.  doi: 10.1007/s10337-017-3282-6

    10. [10]

      Nebert, D. W. G.; Goujon, F.; Gielen, J. Nature 1972, 236, 107.

    11. [11]

      Commission Directive 2002/69/EC. Official J. Eur. Communities 2002a.

    12. [12]

      Levy, W.; Brena, B. M.; Henkelmann, B.; Bernhöft, S.; Pirez, M.; González-Sapienza, G.; Schramm, K. W. Toxicol. in Vitro 2014, 28, 1036.  doi: 10.1016/j.tiv.2014.04.009

    13. [13]

      Crump, D.; Farhat, A.; Chiu, S.; Williams, K. L.; Jones, S. P.; Langlois, V. S. Environ. Sci. Technol. 2016, 50, 3265.  doi: 10.1021/acs.est.5b06181

    14. [14]

      Urbaniak, M.; Tygielska, A.; Krauze, K. Plos One 2016, 11, e0151756.  doi: 10.1371/journal.pone.0151756

    15. [15]

      Ching, L.; Eric, B.; James, L.; Zhang, W. Anal. Bioanal. Chem. 2016, 408, 1095.  doi: 10.1007/s00216-015-9205-1

    16. [16]

      Babikian, S.; Li, G. P.; Bachman, M. IEEE Transactions on Components 2017, 7, 846.

    17. [17]

      Yang, G.; Zhuang, H.; Chen, H.; Ping, X.; Bu, D. Sens. Actuators B 2015, 214, 152.  doi: 10.1016/j.snb.2015.02.128

    18. [18]

      Zheng, X.; Li, H.; Xia, F.; Tian, D.; Hua, X.; Qiao, X.; Zhou, C. Electrochim. Acta 2016, 194, 413.  doi: 10.1016/j.electacta.2016.02.115

    19. [19]

      Moskovits, M. J. Chem. Phys. 1982, 77, 4408.

    20. [20]

      Ruchita, S.; Agrawal, Y. K. Vib. Spectrosc. 2011, 57, 163.  doi: 10.1016/j.vibspec.2011.08.003

    21. [21]

      Liang, H. Y.; Li, Z. P.; Wang, W. Z.; Wu, Y. S.; Xu, H. X. Adv. Mater. 2009, 21, 4614.  doi: 10.1002/adma.200901139

    22. [22]

      Wang, X. S.; Yang, D. P.; Huang, P.; Li, M.; Chen, D.; Cui, D. X. Nanoscale 2012, 24, 7766.

    23. [23]

      Wang, P.; Wu, L.; Lu, Z. C.; Li, Q.; Yin, W. M.; Ding, F.; Han, H. Y. Anal. Chem. 2017, 89, 2424.  doi: 10.1021/acs.analchem.6b04324

    24. [24]

      Zhang, B.; Xu, P.; Xie, X. M.; Wei, H.; Li, Z. P.; Mack, N. H.; Han, X. J.; Xu, H. X.; Wang, H. L. J. Mater. Chem. 2011, 21, 2495.  doi: 10.1039/C0JM02837A

    25. [25]

      Panneerselvam, R.; Liu, G. K.; Wang, Y. H.; Liu, J. Y.; Ding, S. Y.; Li, J. F.; Wu, D. Y.; Tian, Z. Q. Chem. Commun. 2018, 54, 10.  doi: 10.1039/C7CC05979E

    26. [26]

      Xu, W. G.; Mao, N. N.; Zhang, J. Small 2013, 8, 1206.

    27. [27]

      Cheng, J.; Su, X. O.; Han, C. Q.; Wang, S.; Wang, P. L.; Zhang, S.; Xie, J. C. Sens. Actuators B 2018, 255, 2329.  doi: 10.1016/j.snb.2017.09.047

    28. [28]

      Cheng, J.; Zhang, S.; Wang, S.; Wang, P. L.; Su, X. O.; Xie, J. C. Food Chem. 2019, 276, 157.  doi: 10.1016/j.foodchem.2018.10.004

    29. [29]

      Yao, Y.; Wang, W.; Tian, K. Z.; Ingram, W. M.; Cheng, J.; Qu, L. L.; Li, H. T.; Han, C. Q. Spectrochim. Acta A 2018, 195, 165.  doi: 10.1016/j.saa.2018.01.072

    30. [30]

      Cheng, J.; Su, X. O.; Yao, Y.; Han, C. Q.; Wang, S.; Zhao, Y. P. Plos one 2016, 11, e0154402.  doi: 10.1371/journal.pone.0154402

    31. [31]

      Han, C. Q.; Chen, J.; Wu, X. M.; Huang, Y. W. Talanta 2014, 128, 293.  doi: 10.1016/j.talanta.2014.04.083

    32. [32]

      Patricia, T. B.; Niklaas, J. B.; Laura, R. L.; Jorge, P. J.; Luis, M. L. M.; Pablo, H. J. Mater. Chem. 2011, 21, 16880.  doi: 10.1039/c1jm12175h

    33. [33]

      Bonyár, A.; Csarnovics, I.; Veres, M.; Himics, L.; Csik, A.; Kámán, J.; Balázs, L.; Kökényesi, S. Sens. Actuators B 2018, 255, 433.  doi: 10.1016/j.snb.2017.08.063

    34. [34]

      Feng, J. Y.; Hu, Y. X.; Grant, E.; Lu, X. Food Chem. 2018, 239, 816.  doi: 10.1016/j.foodchem.2017.07.014

    35. [35]

      Zhao, B. W.; Feng, S. L.; Hu, Y. X.; Wang, S.; Lu, X. N. Food Chem. 2019, 276, 366.  doi: 10.1016/j.foodchem.2018.10.036

    36. [36]

      Fu, C. C.; Wang, Y.; Chen, G.; Yang, L. Y.; Xu, S. P.; Xu, W. Q. Anal. Chem. 2015, 87, 9555.  doi: 10.1021/acs.analchem.5b02508

    37. [37]

      Sun, K.; Huang, Q.; Meng, G. W.; Lu, Y. L. ACS Appl. Mater. Interfaces 2016, 8, 5723.  doi: 10.1021/acsami.5b12866

    38. [38]

      Lopez, A.; Lovato, F.; Oh, S. H.; Lai, Y. H.; Filbrun, S.; Driskell, E. A.; Driskell, J. D. Talanta 2016, 146, 388.  doi: 10.1016/j.talanta.2015.08.065

    39. [39]

      Zhang, M.; Zhang, X.; Shi, Y.; Liu, Z.; Zhan, J. Talanta 2016, 158, 322.  doi: 10.1016/j.talanta.2016.05.069

    40. [40]

      Chen, Y.; Zhang, Y.; Pan, F.; Liu, J.; Wang, K.; Zhang, C.; Cheng, S.; Lu, L.; Zhang, W.; Zhang, Z.; Zhi, X.; Zhang, Q.; Alfranca, G.; De la Fuente, J. M.; Chen, D.; Cui, D. ACS Nano 2016, 10, 8169.  doi: 10.1021/acsnano.6b01441

    41. [41]

      Li, B.; Shi, Y.; Cui, J.; Liu, Z.; Zhang, X.; Zhan, J. Anal. Chim. Acta 2016, 923, 66.  doi: 10.1016/j.aca.2016.04.002

    42. [42]

      Fang, F.; Qi, Y.; Lu, F.; Yang, L. Talanta 2016, 146, 351.  doi: 10.1016/j.talanta.2015.08.067

    43. [43]

      Tang, H. B.; Meng, G. W.; Huang, Q.; Zhang, Z.; Huang, Z. L.; Zhu, C. H. Adv. Funct. Mater. 2012, 22, 218.  doi: 10.1002/adfm.201102274

    44. [44]

      Li, Z. B.; Meng, G. W.; Huang, Q.; Hu, X. Y.; He, X.; Tang, H. B.; Wang, Z. W.; Li, F. D. Small 2015, 40, 5452

    45. [45]

      Bantz, K. C.; Haynes, C. L. Vib. Spectrosc. 2009, 50, 29.  doi: 10.1016/j.vibspec.2008.07.006

    46. [46]

      Lu, Y. L.; Yao, G. H.; Sun, K. X.; Huang, Q. Phys. Chem. Chem. Phys. 2015, 17, 21149.  doi: 10.1039/C4CP04904G

    47. [47]

      Zhu, C.; Meng, G. W.; Huang, Q.; Li, Z. B.; Huang, Z. L.; Wang, M. L.; Yuan, J. P. J. Mater Chem. 2012, 22, 2271.  doi: 10.1039/C2JM14823D

    48. [48]

      Arocikia, J. D.; Parimaladevi, R.; Vasant, S. G.; Umadevi, M. J. Clust. Sci. 2018, 29, 281.  doi: 10.1007/s10876-017-1323-9

    49. [49]

      Shanta, P. V.; Cheng, Q. ACS Sensors 2017, 6, 817.

    50. [50]

      Jency, D. A.; Umadevi, M.; Sathe, G. V. J. Raman Spectrosc. 2015, 46, 377.  doi: 10.1002/jrs.4654

    51. [51]

      Xu, W.; Meng, G. W., Huang, Q.; Hu, X. Y.; Huang, Z. L.; Tang, H. B.; Zhang, J. X. Appl. Surf. Sci. 2013, 271, 125.  doi: 10.1016/j.apsusc.2013.01.144

    52. [52]

      Lu, Y. L.; Huang, Q.; Meng, G. W.; Wu, L. J.; Zhang, J. J. Analyst 2014, 139, 3083.  doi: 10.1039/c4an00197d

    53. [53]

      Zhang, C. Y.; Hao, R.; Fu, Y. Z.; Zhang, H.; Moeendarbari, J. S.; Peckering, C. S.; Hao, Y. W.; Liu, Y. Q. Appl. Surf. Sci. 2017, 400, 49.  doi: 10.1016/j.apsusc.2016.12.161

    54. [54]

      Rindzevicius, T.; Barten, J.; Vorobiev, M.; Schmidt, M. S.; Castillo, J. J.; Boisen, A. Vib. Spectrosc. 2017, 90, 1.  doi: 10.1016/j.vibspec.2017.02.004

    55. [55]

      Jiao, C. L.; Wang, W.; Liu, J.; Yuan, Y. X.; Xu, M. M.; Yao, J. L. Acta Chim. Sinica 2018, 76, 526.
       

    56. [56]

      Liu, J.; Sun, H. L.; Yin, L.; Yuan, Y. X.; Xu, M. M.; Yao, J. L. Acta Chim. Sinica 2019, 77, 257.  doi: 10.3866/PKU.WHXB201803191
       

    57. [57]

      Jia, F. L.; Liu, J.; Zhang, L. Z. Acta Chim. Sinica 2017, 75, 602.  doi: 10.3866/PKU.WHXB201611251
       

    58. [58]

      Commission Directive 277/2012/EC. Official J. Eur. Communities 2012.

    59. [59]

      National standards of the People's Republic of China, GB/T 2762-2017.

    60. [60]

      National standards of the People's Republic of China, GB/T 13078-2017.

  • 加载中
    1. [1]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    20. [20]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

Metrics
  • PDF Downloads(33)
  • Abstract views(1844)
  • HTML views(292)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return