Citation: Yang Qi-Liang, Wang Xiang-Yang, Weng Xin-Jun, Yang Xiang, Xu Xue-Tao, Tong Xiaofeng, Fang Ping, Wu Xin-Yan, Mei Tian-Sheng. Palladium-Catalyzed ortho-Selective C-H Chlorination of Arenes Using Anodic Oxidation[J]. Acta Chimica Sinica, ;2019, 77(9): 866-873. doi: 10.6023/A19040135 shu

Palladium-Catalyzed ortho-Selective C-H Chlorination of Arenes Using Anodic Oxidation

  • Corresponding author: Wu Xin-Yan, xinyanwu@ecust.edu.cn Mei Tian-Sheng, mei7900@sioc.ac.cn
  • Received Date: 19 April 2019
    Available Online: 8 September 2019

    Fund Project: the National Natural Science Foundation of China 21772222the National Natural Science Foundation of China 21821002Project supported by the National Natural Science Foundation of China (Nos. 21772222 and 21821002) and the Department of Education of Guangdong Province (Nos. 2017KTSCX185, 2017KSYS010, 2016KCXTD005)the Department of Education of Guangdong Province 2016KCXTD005the Department of Education of Guangdong Province 2017KSYS010the Department of Education of Guangdong Province 2017KTSCX185

Figures(6)

  • Aryl halides are key building blocks in organic synthesis for the construction of valuable natural products, medicinal and agricultural chemicals via transition metal-catalyzed coupling or substitution reactions. Halogenation is one of the most fundamental and important reactions in organic synthesis. Electrochemical transition-metal-catalyzed C-H functionalization has emerged as a powerful tool for molecular synthesis with the prospect of avoiding the use of costly and toxic oxidants or reductants, thereby reducing the footprint of undesirable, toxic byproducts. The palladium-catalyzed electrochemical C-H chlorination of benzamide derivatives directed by PIP amine directing group under divided cells has been demonstrated, in which readily available inorganic halides salts serve as halogen sources. The reaction features a broad substrate scope, high functional group tolerance, and compatibility of thiophene substrates. This reaction could be conducted on a gram scale, which is important for future application. Additionally, the sequential bromination and chlorination of C(sp2)-H bond constructs highly functionalized aromatic carboxylic acid derivatives. The typical procedure is as follows:The electrolysis was carried out in an H-type divided cell (anion-exchange membrane), with a RVC anode (10 mm×10 mm×12 mm) and a platinum cathode (10 mm×10 mm×0.2 mm). The anodic chamber was charged with Pd(OAc)2 (5.6 mg, 0.025 mmol, 10 mol%) and benzamide derivative (0.25 mmol, 1.0 equiv.) and dissolved in DMF (10 mL). LiCl (847.8 mg, 20.0 mmol) was added in the cathodic chamber and dissolved in water (10 mL). Then the reaction mixture was electrolyzed under a constant current of 5 mA at 90℃ until the complete consumption of the starting material as monitored by TLC or 1H NMR. After the reaction, EtOAc (50 mL) was added to dilute the mixture and then washed with water (20 mL×3) and then with brine (20 mL). The organic fraction was dried over Na2SO4 and concentrated. The resulting residue was purified by silica gel flash chromatography to give the chlorination product.
  • 加载中
    1. [1]

      (a) Butler, A.; Walker, J. V. Chem. Rev. 1993, 93, 1937; (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew Chem., Int. Ed. 2005, 44, 4442.

    2. [2]

      For selected reviews, see: (a) Hassan, J.; Se'vignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359; (b) Littke, A. F.; Fu, G. C. Angew Chem., Int. Ed. 2002, 41, 4176; (c) Corbet, J. P.; Mignani, G. Chem. Rev. 2006, 106, 2651; (d) Yin, L.-X.; Liebscher, J. Chem. Rev. 2007, 107, 133.

    3. [3]

      For a review on an ortho-lithiation approach, see: Snieckus, V. Chem. Rev. 1990, 90, 879.

    4. [4]

      Hodgson, H. H. Chem. Rev. 1947, 40, 251.  doi: 10.1021/cr60126a003

    5. [5]

      De La Mare, P. B. D. Electrophilic Halogenation, Cambridge University Press, New York, 1976.

    6. [6]

    7. [7]

    8. [8]

      (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790; (b) Wang, W.; Pan, C.; Chen, F.; Cheng, J. Chem. Commun. 2011, 47, 3978; (c) Mo, S.; Zhu, Y.; Shen, Z. Org. Biomol. Chem. 2013, 11, 2756; (d) Du, Z.-J.; Gao, L.-X.; Lin, Y.-J.; Han, F.-S. ChemCatChem 2014, 6, 123; (e) Hufman, L. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 9196; (f) King, A. E.; Huffman, L. M.; Casitas, A.; Costas, M.; Ribas, X.; Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 12068; (g) Wang, Z.-L.; Zhao, L.; Wang, M.-X. Org. Lett. 2011, 13, 6560; (h) Wang, Z.-L.; Zhao, L.; Wang, M.-X. Org. Lett. 2012, 14, 1472; (i) Casitas, A.; Ribas, X. Chem. Sci. 2013, 4, 2301; (j) Zhang, H.; Yao, B.; Zhao, L.; Wang, D.-X.; Xu, B.-Q.; Wang, M.-X. J. Am. Chem. Soc. 2014, 136, 6326; (k) Truong, T.; Klimovica, K.; Daugulis, O. J. Am. Chem. Soc. 2013, 135, 9342; (l) Suess, A. M.; Ertem, M. Z. C.; Cramer, J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 9797; (m) Zhang, Q.; Yin, X.-S.; Zhao, S.; Fang, S.-L.; Shi, B.-F. Chem. Commun. 2014, 50, 8353.

    9. [9]

      For selected examples of rhodium-catalyzed direct halogenation of C-H bonds, see: (a) Schroder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 8298; (b) Hwang, H.; Kim, J.; Jeong, J.; Chang, S. J. Am. Chem. Soc. 2014, 136, 10770; (c) Qian, G.; Hong, X.; Liu, B.; Mao, H.; Xu, B. Org. Lett. 2014, 16, 5294.

    10. [10]

      For an example of ruthenilum-catalyzed ortho-halogenation, see: Wang, L.-H.; Ackermann, L. Chem. Commun. 2014, 50, 1083.

    11. [11]

    12. [12]

      For recent reviews on organic electrochemistry, see: (a) Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Chin. J. Chem. 2019, 37, 49; (b) Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27; (c) Liu, K.; Song, C.; Lei, A. Org. Biomol. Chem. 2018, 16, 2375; (d) Sauer, G. S.; Lin, S. ACS Catal. 2018, 8, 5175; (e) Parry, J.; Fu, N.; Lin, S. Synlett 2018, 29, 257; (f) Nutting, J. E.; Rafiee, M.; Stahl, S. S. Chem. Rev. 2018, 118, 4834; (g) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485; (h) Waldvogel, S. R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C. Chem. Rev. 2018, 118, 6706; (i) Moeller, K. D. Chem. Rev. 2018, 118, 4817; (j) Yang, Q.-L.; Fang, P.; Mei, T.-S. Chin. J. Chem. 2018, 36, 338; (k) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230; (l) Horn, E. J.; Rosen, B. R.; Baran, P. S. ACS Cent. Sci. 2016, 2, 302; (m) Hou, Z.-W.; Mao, Z.-Y.; Xu, H.-C. Synlett 2017, 28, 1867; (n) Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.

    13. [13]

      For recent examples on organic electrochemistry, see: (a) Yuan, Y.; Yao, A.; Zheng, Y.; Gao, M.; Zhou, Z.; Qiao, J.; Hu, J.; Ye, B.; Zhao, J.; Wen, H.; Lei, A. iScience 2019, 12, 293; (b) Wang, P.; Tang, S.; Huang, P. F.; Lei, A. W. Angew. Chem., Int. Ed. 2017, 56, 3009; (c) Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.; Liu, G.; Yang, Y.; Mo, F. Org. Lett. 2019, 21, 762; (d) Yan, H.; Hou, Z.-W.; Xu, H.-C. Angew. Chem., Int. Ed. 2019, 58, 4592; (e) Hou, Z.-W.; Mao, Z.-Y.; Zhao, H.-B.; Melcamu, Y. Y.; Lu, X.; Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 9168; (f) Rafiee, M.; Wang, F.; Hruszkewycz, D. P.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 22; (g) Wang, H.; Zhang, J.; Tan, J.; Xin, L.; Li, Y.; Zhang, S.; Xu, K. Org. Lett. 2018, 20, 2505; (h) Lin, D. Z.; Huang, J. M. Org. Lett. 2018, 20, 2112; (i) Ye, Z.; Ding, M.; Wu, Y.; Li, Y.; Hua, W.; Zhang, F. Green Chem. 2018, 20, 1732; (j) Wang, Q.-Q.; Xu, K.; Jiang, Y.-Y.; Liu, Y.-G.; Sun, B.-G.; Zeng, C.-C. Org. Lett. 2017, 19, 5517; (k) Wiebe, A.; Lips, S.; Schollmeyer, D.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2017, 56, 14727; (l) Kawamata, Y.; Yan, M.; Liu, Z.; Bao, D.-H.; Chen, J.; Starr, J.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 7448; (m) Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.; Chen, K.; Eastgate, M. D.; Baran, P. S. Nature 2016, 533, 77.

    14. [14]

    15. [15]

      For selected examples on transition-metal-catalyzed electrochemical C-H functionalization, see: (a) Qiu, Y.; Stangier, M.; Meyer, T. H.; Oliveira, J. C. A.; Ackermann, L. Angew. Chem. Int. Ed. 2018, 57, 14179; (b) Sauermann, N.; Mei, R.; Ackermann, L. Angew. Chem. Int. Ed. 2018, 57, 5090; (c) Gao, X.; Wang, P.; Zeng, L.; Tang, S.; Lei, A. J. Am. Chem. Soc. 2018, 140, 4195; (d) Tang, S.; Wang, D.; Liu, Y.; Liu, L.; Lei, A. Nature Commun. 2018, 9, 798; (e) Xu, F.; Li, Y.-J.; Huang, C.; Xu, H.-C. ACS Catal. 2018, 8, 3820; (f) Shrestha, A.; Lee, M.; Dunn, A. L.; Sanford, M. S. Org. Lett. 2018, 20, 204; (g) Grayaznova, T. V.; Dudkina, Y. B.; Islamov, D. R.; Kataeva, O. N.; Sinyashin, O. G.; Vicic, D. A.; Budnikova, Y. Н. J. Organomet. Chem. 2015, 785, 68; (h) Amatore, C.; Cammoun, C.; Jutand, A. Adv. Synth. Catal. 2007, 349, 292; (i) Freund, M. S.; Labinger, J. A.; Lewis, N. S.; Bercaw, J. E. J. Mol. Catal. 1994, 87, L11.

    16. [16]

      Kakiuchi, F.; Kochi, T.; Mutsutani, H.; Kobayashi, N.; Urano, S.; Sato, M.; Nishiyama, S.; Tanabe, T. J. Am. Chem. Soc. 2009, 131, 11310.  doi: 10.1021/ja9049228

    17. [17]

      (a) Yang, Q.-L.; Wang, X.-Y.; Wang, T.-L.; Yang, X.; Liu, D.; Tong, X.; Wu, X.-Y.; Mei, T.-S. Org. Lett. 2019, 21, 2645; (b) Yang, Q.-L.; Li, C.-Z.; Zhang, L.-W.; Li, Y.-Y.; Tong, X.; Wu, X.-Y.; Mei, T.-S. Organometallics 2019, 38, 1208; (c) Yang, Q.-L.; Wang, X.-Y.; Lu, J.-Y.; Zhang, L.-P.; Fang, P.; Mei, T.-S. J. Am. Chem. Soc. 2018, 140, 11487; (d) Li, Y.-Q.; Yang, Q.-L.; Fang, P.; Mei, T.-S.; Zhang, D. Org. Lett. 2017, 19, 2905; (e) Ma, C.; Zhao, C.-Q.; Li, Y.-Q.; Zhang, L.-P.; Xu, X.; Zhang, K.; Mei, T.-S. Chem. Commun. 2017, 53, 12189; (f) Yang, Q.-L.; Li, Y.-Q.; Ma, C.; Fang, P.; Zhang, X.-J.; Mei, T.-S. J. Am. Chem. Soc. 2017, 139, 3293.

    18. [18]

      During this manuscript preparation, Kakiuchi reported similar work using benzamide derivatives: Konishi, M.; Tsuchida, K.; Sano, K.; Kochi, T.; Kakiuchi, F. J. Org. Chem. 2017, 82, 8716. However, the work was independently carried out. The reaction conditions and directing groups used in these two studies are different.

    19. [19]

      (a) Sun, H.; Yu, L.; Jin, X.; Hu, X.; Wang, D.; Chen, G. Z. Electrochem. Commun. 2005, 7, 685; (b) Yu, L.; Jin, X.; Chen, G. Z. J. Electroanal. Chem. 2013, 688, 371.

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(14)
  • Abstract views(1362)
  • HTML views(280)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return