Citation: Wu Yong, Ye Xin-Shan. Recent Advances in Chemical Synthesis of Polysaccharides[J]. Acta Chimica Sinica, ;2019, 77(7): 581-597. doi: 10.6023/A19040128 shu

Recent Advances in Chemical Synthesis of Polysaccharides

  • Corresponding author: Ye Xin-Shan, xinshan@bjmu.edu.cn
  • Received Date: 11 April 2019
    Available Online: 6 July 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21738001)the National Natural Science Foundation of China 21738001

Figures(22)

  • Polysaccharides are a class of bio-macromolecules with highly complex structures that are widely found in living organisms such as microorganisms, plants and animals. Polysaccharides serve not only as structural components and energy sources of cells, but also as important signaling molecules which are involved in many key biological processes. Studies on polysaccharide-mediated biological processes require access to structurally defined molecules, which approach the size and complexity of those found in nature, but naturally-occurring polysaccharides usually exist in microheterogeneous forms, making it difficult or even impossible to isolate pure polysaccharides from natural sources in most cases. Chemical synthesis represents a reliable solution to this problem, which can provide polysaccharide samples with defined chemical structures for functional studies and even a library of analogs of natural glycans for structure-activity relationship investigations. But unlike oligonucleotides and peptides, which can already be obtained by automated synthesizers in a very short of time, the chemical synthesis of glycans remains a great challenge for synthetic chemists. The major challenge for glycan synthesis lies in the need to handle both stereo-and regio-chemistry in the construction of each glycosyl linkage, and the extensive protecting-group manipulations as well as much intermediate separation make it a tedious and time-consuming process. Over the past decades, carbohydrate chemists have developed many glycosylation reactions. A series of strategies for glycan assembly have been also established. The advances in both synthetic methods and strategies have significantly increased the synthetic efficiency of carbohydrate molecules, and many great accomplishments in the field of polysaccharide synthesis have been witnessed in recent decades. Some representative methods and strategies, and their successful applications in the chemical synthesis of complex polysaccharides are summarized in this review.
  • 加载中
    1. [1]

      Varki, A. Glycobiology 1993, 3, 97.  doi: 10.1093/glycob/3.2.97

    2. [2]

      Krasnova, L.; Wong, C.-H. Annu. Rev. Biochem. 2016, 85, 599.  doi: 10.1146/annurev-biochem-060614-034420

    3. [3]

      Boltje, T. J.; Buskas, T.; Boons, G.-J. Nat. Chem. 2009, 1, 611.  doi: 10.1038/nchem.399

    4. [4]

      Seeberger, P. H.; Werz, D. B. Nature 2007, 446, 1046.  doi: 10.1038/nature05819

    5. [5]

    6. [6]

      Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.  doi: 10.1126/science.1059820

    7. [7]

      Gabius, H.-J. The Sugar Code:Fundamentals of Glycosciences, John Wiley & Sons, New Jersey, 2011.

    8. [8]

      Tanaka, H.; Kawai, T.; Adachi, Y.; Hanashima, S.; Yamaguchi, Y.; Ohno, N.; Takahashi, T. Bioorg. Med. Chem. 2012, 20, 3898.  doi: 10.1016/j.bmc.2012.04.017

    9. [9]

      Petitou, M.; Duchaussoy, P.; Driguez, P.-A.; Hérault, J.-P.; Lormeau, J.-C.; Herbert, J.-M. Bioorg. Med. Chem. Lett. 1999, 9, 1155.  doi: 10.1016/S0960-894X(99)00155-9

    10. [10]

      Wang, L.; Feng, S.; An, L.; Gu, G.; Guo, Z. J. Org. Chem. 2015, 80, 10060.  doi: 10.1021/acs.joc.5b01686

    11. [11]

      (a) Zhu, X.; Schmidt, R. R. Angew. Chem. Int. Ed. 2009, 48, 1900; (b) Hsu, C.-H.; Hung, S.-C.; Wu, C.-Y.; Wong, C.-H. Angew. Chem. Int. Ed. 2011, 50, 11872; (c) Seeberger, P. H. Acc. Chem. Res. 2015, 48, 1450; (d) Kulkarni, S. S.; Wang, C.-C.; Sabbavarapu, N. M.; Podilapu, A. R.; Liao, P.-H.; Hung, S.-C. Chem. Rev. 2018, 118, 8025.

    12. [12]

      Michael, A. Am. Chem. J. 1879, 1, 305.  doi: 10.1021/ja02151a603

    13. [13]

      Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503.  doi: 10.1021/cr00020a006

    14. [14]

      (a) Garcia, B. A.; Poole, J. L.; Gin, D. Y. J. Am. Chem. Soc. 1997, 119, 7597; (b) Garcia, B. A.; Gin, D. Y. J. Am. Chem. Soc. 2000, 122, 4269.

    15. [15]

      (a) Schmidt, R. R.; Michel, J. Angew. Chem. Int. Ed. 1980, 19, 731; (b) Schmidt, R. R. Angew. Chem. Int. Ed. 1986, 25, 212.

    16. [16]

      (a) Codée, J. D. C.; Litjens, R. E. J. N.; van den Bos, L. J.; Overkleeft, H. S.; van der Marel, G. A. Chem. Soc. Rev. 2005, 34, 769; (b) Lian, G.; Zhang, X.; Yu, B. Carbohydr. Res. 2015, 403, 13.

    17. [17]

      Mootoo, D. R.; Konradsson, P.; Udodong, U.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 5583.  doi: 10.1021/ja00224a060

    18. [18]

      Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem. Int. Ed. 1996, 35, 1380.  doi: 10.1002/(ISSN)1521-3773

    19. [19]

      Plante, O. J.; Palmacci, E. R.; Andrade, R. B.; Seeberger, P. H. J. Am. Chem. Soc.2001, 123, 9545.  doi: 10.1021/ja016227r

    20. [20]

      Yu, B. Acc. Chem. Res. 2018, 51, 507.  doi: 10.1021/acs.accounts.7b00573

    21. [21]

      Koenigs, W.; Knorr, E. Ber. Dtsch. Chem. Ges. 1901, 34, 957.  doi: 10.1002/(ISSN)1099-0682

    22. [22]

      Zemplén, G.; Gerecs, A. Ber. Dtsch. Chem. Ges. 1930, 63, 2720.  doi: 10.1002/cber.v63:10

    23. [23]

      Helferich, B.; Wedemeyer, K. F. Justus Liebigs Ann. Chem. 1949, 563, 139.  doi: 10.1002/(ISSN)1099-0690

    24. [24]

      Igarashi, K.; Irisawa, J.; Honma, T. Carbohydr. Res. 1975, 39, 213.  doi: 10.1016/S0008-6215(00)86131-5

    25. [25]

      Kronzer, F. J.; Schuerch, C. Carbohydr. Res. 1973, 27, 379.  doi: 10.1016/S0008-6215(00)81320-8

    26. [26]

      Wulff, G.; Röhle, G.; Krüger, W. Chem. Ber. 1972, 105, 1097.  doi: 10.1002/(ISSN)1099-0682

    27. [27]

      Yamada, H.; Hayashi, T. Carbohydr. Res. 2002, 337, 581.  doi: 10.1016/S0008-6215(02)00029-0

    28. [28]

      Bernstein, S.; Conrow, R. B. J. Org. Chem. 1971, 36, 863.  doi: 10.1021/jo00806a001

    29. [29]

      Nishizawa, M.; Garcia, D. M.; Shin, T.; Yamada, H. Chem. Pharm. Bull. 1993, 41, 784.  doi: 10.1248/cpb.41.784

    30. [30]

      Mukaiyama, T.; Murai, Y.; Shoda, S. Chem. Lett. 1981, 10, 431.  doi: 10.1246/cl.1981.431

    31. [31]

      Mukaiyama, T.; Hashimoto, Y.; Shoda, S. Chem. Lett. 1983, 12, 935.  doi: 10.1246/cl.1983.935

    32. [32]

      Matsumoto, T.; Maeta, H.; Suzuki, K. Tetrahedron Lett. 1988, 29, 3567.  doi: 10.1016/0040-4039(88)85294-8

    33. [33]

      Hashimoto, S.; Hayashi, M.; Noyori, R. Tetrahedron Lett. 1984, 25, 1379.  doi: 10.1016/S0040-4039(01)80163-5

    34. [34]

      Mukaiyama, T.; Jona, H.; Takeuchi, K. Chem. Lett. 2000, 29, 696.  doi: 10.1246/cl.2000.696

    35. [35]

      Zhu, X.; Schmidt, R. R. Angew. Chem., Int. Ed. 2009, 48, 1900.  doi: 10.1002/anie.v48:11

    36. [36]

      El-Badry, M. H.; Gervay-Hague, J. Tetrahedron Lett. 2005, 46, 6727.  doi: 10.1016/j.tetlet.2005.07.129

    37. [37]

      (a) Lam, S. N.; Gervay-Hague, J. Carbohydr. Res. 2002, 337, 1953; (b) Lam, S. N.; Gervay-Hague, J. Org. Lett. 2002, 4, 2039; (c) Lam, S. N.; Gervay-Hague, J. J. Org. Chem. 2005, 70, 2387.

    38. [38]

      Sun, L.; Wu, X.; Xiong, D.-C.; Ye, X.-S. Angew. Chem. Int. Ed. 2016, 55, 8041.  doi: 10.1002/anie.201600142

    39. [39]

      Park, Y.; Harper, K. C.; Kuhl, N.; Kwan, E. E.; Liu, R. Y.; Jacobsen, E. N. Science 2017, 355, 162.  doi: 10.1126/science.aal1875

    40. [40]

      Schmidt, R. R.; Toepfer, A. Tetrahedron Lett. 1991, 32, 3353.  doi: 10.1016/S0040-4039(00)92704-7

    41. [41]

      Yu, B.; Tao, H. Tetrahedron Lett. 2001, 42, 2405.  doi: 10.1016/S0040-4039(01)00157-5

    42. [42]

      Ferrier, R. J.; Hay, R. W.; Vethaviyasar, N. Carbohydr. Res. 1973, 27, 55.  doi: 10.1016/S0008-6215(00)82424-6

    43. [43]

      Veeneman, G. H.; Van Leeuwen, S. H.; Van Boom, J. H. Tetrahedron Lett. 1990, 31, 1331.  doi: 10.1016/S0040-4039(00)88799-7

    44. [44]

      Konradsson, P.; Udodong, U. E.; Fraser-Reid, B. Tetrahedron Lett. 1990, 31, 4313.  doi: 10.1016/S0040-4039(00)97609-3

    45. [45]

      Andersson, F.; Fúgedi, P.; Garegg, P. J.; Nashed, M. Tetrahedron Lett. 1986, 27, 3919.  doi: 10.1016/S0040-4039(00)83917-9

    46. [46]

      Martichonok, V.; Whitesides, G. M. J. Org. Chem. 1996, 61, 1702.  doi: 10.1021/jo951711w

    47. [47]

      Crich, D.; Smith, M. J. Am. Chem. Soc. 2001, 123, 9015.  doi: 10.1021/ja0111481

    48. [48]

      Codée, J. D. C.; Litjens, R. E. J. N.; den Heeten, R.; Overkleeft, H. S.; van Boom, J. H.; van der Marel, G. A. Org. Lett. 2003, 5, 1519.  doi: 10.1021/ol034312t

    49. [49]

      Wang, C.; Wang, H.; Huang, X.; Zhang, L.-H.; Ye, X.-S. Synlett 2006, 2846.

    50. [50]

      Marra, A.; Mallet, J. M.; Amatore, C.; Sinaÿ, P. Synlett 1990, 572.  doi: 10.1055/s-1990-22045

    51. [51]

      (a) Mitsudo, K.; Kawaguchi, T.; Miyahara, S.; Matsuda, W.; Kuroboshi, M.; Tanaka, H. Org. Lett. 2005, 7, 4649; (b) Nokami, T.; Shibuya, A.; Tsuyama, H.; Suga, S.; Bowers, A. A.; Crich, D.; Yoshida, J. I. J. Am. Chem. Soc. 2007, 129, 10922.

    52. [52]

    53. [53]

      Goswami, M.; Ellern, A.; Pohl, N. L. B. Angew. Chem. Int. Ed. 2013, 52, 8441.  doi: 10.1002/anie.v52.32

    54. [54]

      Yamada, H.; Harada, T.; Miyazaki, H.; Takahashi, T. Tetrahedron Lett. 1994, 35, 3979.  doi: 10.1016/S0040-4039(00)76718-9

    55. [55]

      Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.  doi: 10.1021/ja982232s

    56. [56]

      Huang, X.; Huang, L.; Wang, H.; Ye, X.-S. Angew. Chem Int. Ed. 2004, 43, 5221.  doi: 10.1002/(ISSN)1521-3773

    57. [57]

      Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.  doi: 10.1126/science.1057324

    58. [58]

      Tanaka, H.; Adachi, M.; Tsukamoto, H.; Ikeda, T.; Yamada, H.; Takahashi, T. Org. Lett. 2002, 4, 4213.  doi: 10.1021/ol020150+

    59. [59]

      Yu, B.; Yu, H.; Hui, Y.; Han, X. Tetrahedron Lett. 1999, 40, 8591.  doi: 10.1016/S0040-4039(99)01839-0

    60. [60]

      Wang, P.; Lee, H.; Fukuda, M.; Seeberger, P. H. Chem. Commun. 2007, 1963.

    61. [61]

      Vohra, Y.; Buskas, T.; Boons, G.-J. J. Org. Chem. 2009, 74, 6064.  doi: 10.1021/jo901135k

    62. [62]

      (a) Hsu, C.-H.; Chu, K. C.; Lin, Y. S.; Han, J. L.; Peng, Y. S.; Ren, C. T.; Wong, C.-H. Chem. Eur. J. 2010, 16, 1754; (b) Tanaka, H.; Tateno, Y.; Nishiura, Y.; Takahashi, T. Org. Lett. 2008, 10, 5597; (c) Tanaka, H.; Adachi, M.; Takahashi, T. Chem. Eur. J. 2005, 11, 849.

    63. [63]

      (a) Dinkelaar, J.; Gold, H.; Overkleeft, H. S.; Codée, J. D.; van der Marel, G. A. J. Org. Chem. 2009, 74, 4208; (b) Hu, Y. P.; Lin, S. Y.; Huang, C. Y.; Zulueta, M. M. L.; Liu, J. Y.; Chang, W.; Hung, S.-C. Nat. Chem. 2011, 3, 557.

    64. [64]

      Sarkar, S.; Dutta, S.; Das, G.; Sen, A. K. Tetrahedron 2011, 67, 4118.  doi: 10.1016/j.tet.2011.03.109

    65. [65]

      Burkhart, F.; Zhang, Z.; Wacowich-Sgarbi, S.; Wong, C.-H. Angew. Chem. Int. Ed. 2001, 40, 1274.  doi: 10.1002/(ISSN)1521-3773

    66. [66]

      Tsai, B. L.; Han, J. L.; Ren, C. T.; Wu, C.-Y.; Wong, C.-H. Tetrahedron Lett. 2011, 52, 2132.  doi: 10.1016/j.tetlet.2010.11.055

    67. [67]

      Mong, K. K. T.; Wong, C.-H. Angew. Chem. Int. Ed. 2002, 41, 4087.  doi: 10.1002/1521-3773(20021104)41:21<4087::AID-ANIE4087>3.0.CO;2-X

    68. [68]

      Lee, J. C.; Wu, C.-Y.; Apon, J. V.; Siuzdak, G.; Wong, C.-H. Angew. Chem. Int. Ed. 2006, 45, 2753.  doi: 10.1002/(ISSN)1521-3773

    69. [69]

      Mong, T. K. K.; Lee, H. K.; Durón, S. G.; Wong, C.-H. PNAS 2003, 100, 797.  doi: 10.1073/pnas.0337590100

    70. [70]

      Polat, T.; Wong, C.-H. J. Am. Chem. Soc. 2007, 129, 12795.  doi: 10.1021/ja073098r

    71. [71]

      Hsu, Y.; Lu, X. A.; Zulueta, M. M. L.; Tsai, C. M.; Lin, K. I.; Hung, S.-C.; Wong, C.-H. J. Am. Chem. Soc. 2012, 134, 4549.  doi: 10.1021/ja300284x

    72. [72]

      Wang, Z.; Zhou, L.; El-Boubbou, K.; Ye, X.-S.; Huang, X. J. Org. Chem. 2007, 72, 6409.  doi: 10.1021/jo070585g

    73. [73]

      Li, Q.; Guo, Z. Org. Lett. 2017, 19, 6558.  doi: 10.1021/acs.orglett.7b03275

    74. [74]

      Huang, L.; Huang, X. Chem. Eur. J. 2007, 13, 529.  doi: 10.1002/(ISSN)1521-3765

    75. [75]

      Miermont, A.; Zeng, Y.; Jing, Y.; Ye, X.-S.; Huang, X. J. Org. Chem. 2007, 72, 8958.  doi: 10.1021/jo701694k

    76. [76]

      Wang, Z.; Xu, Y.; Yang, B.; Tiruchinapally, G.; Sun, B.; Liu, R.; Huang, X. Chem. Eur. J. 2010, 16, 8365.  doi: 10.1002/chem.v16:28

    77. [77]

      Sun, B.; Srinivasan, B.; Huang, X. Chem. Eur. J. 2008, 14, 7072.  doi: 10.1002/chem.v14:23

    78. [78]

      Wang, Y.-S.; Wu, Y.; Xiong, D.-C.; Ye, X.-S. Chin. J. Chem. 2019, 37, 42.  doi: 10.1002/cjoc.v37.1

    79. [79]

      (a) Gao, J.; Guo, Z. J. Org. Chem. 2013, 78, 12717; (b) Gao, J.; Liao, G.; Wang, L.; Guo, Z. Org. Lett. 2014, 16, 988; (c) Gao, J.; Guo, Z. Org. Lett. 2016, 18, 5552. (d) Wang, D.; Xiong, D.-C.; Ye, X.-S. Chin. Chem. Lett. 2018, 29, 1340; (e) Wu, Y.; Xiong, D.-C.; Chen, S.-C.; Wang, Y.-S.; Ye, X.-S. Nat. Commun. 2017, 8, 14851.

    80. [80]

      Werz, D. B.; Castagner, B.; Seeberger, P. H. J. Am. Chem. Soc. 2007, 129, 2770.  doi: 10.1021/ja069218x

    81. [81]

      Routenberg, L. K.; Seeberger, P. H. Angew. Chem. Int. Ed. 2004, 43, 602.  doi: 10.1002/(ISSN)1521-3773

    82. [82]

      Ratner, D. M.; Swanson, E. R.; Seeberger, P. H. Org. Lett. 2003, 5, 4717.  doi: 10.1021/ol035887t

    83. [83]

      Codée, J. D. C.; Kröck, L.; Castagner, B.; Seeberger, P. H. Chem. Eur. J. 2008, 14, 3987.  doi: 10.1002/chem.v14:13

    84. [84]

      (a) Walvoort, M. T. C.; Volbeda, A. G.; Reintjens, N. R. M.; van den Elst, H.; Plante, O. J.; Overkleeft, H. S.; Codée, J. D. Org. Lett. 2012, 14, 3776; (b) Hahm, H. S.; Broecker, F.; Kawasaki, F.; Mietzsch, M.; Heilbronn, R.; Fukuda, M.; Seeberger, P. H. Chem 2017, 2, 114.

    85. [85]

      Hewitt, M. C.; Snyder, D. A.; Seeberger, P. H. J. Am. Chem. Soc. 2002, 124, 13434.  doi: 10.1021/ja027538k

    86. [86]

      Matsuzaki, Y.; Ito, Y.; Nakahara, Y.; Ogawa, T. Tetrahedron Lett. 1993, 34, 1061.  doi: 10.1016/S0040-4039(00)77492-2

    87. [87]

      Hansen, S. U.; Miller, G. J.; Cliff, M. J.; Jayson, G. C.; Gardiner, J. M. Chem. Sci. 2015, 6, 6158.  doi: 10.1039/C5SC02091C

    88. [88]

      Li, A.; Kong, F. Bioorg. Med. Chem. 2005, 13, 839.  doi: 10.1016/j.bmc.2004.10.035

    89. [89]

      Pozsgay, V. Angew. Chem. Int. Ed. 1998, 37, 138.  doi: 10.1002/(ISSN)1521-3773

    90. [90]

      Pozsgay, V.; Chu, C.; Pannell, L.; Wolfe, J.; Robbins, J. B.; Schneerson, R. PNAS 1999, 96, 5194.  doi: 10.1073/pnas.96.9.5194

    91. [91]

      Pozsgay, V. Tetrahedron:Asymmetry 2000, 11, 151.  doi: 10.1016/S0957-4166(99)00553-4

    92. [92]

      Joe, M.; Bai, Y.; Nacario, R. C.; Lowary, T. L. J. Am. Chem. Soc. 2007, 129, 9885.  doi: 10.1021/ja072892+

    93. [93]

      Ishiwata, A.; Ito, Y. J. Am. Chem. Soc. 2011, 133, 2275.  doi: 10.1021/ja109932t

    94. [94]

      Thadke, S. A.; Mishra, B.; Islam, M.; Pasari, S.; Manmode, S.; Rao, B. V.; Hotha, S. Nat. Commun. 2017, 8, 14019.  doi: 10.1038/ncomms14019

    95. [95]

      Pasari, S.; Manmode, S.; Walke, G.; Hotha, S. Chem. Eur. J. 2018, 24, 1128.  doi: 10.1002/chem.201704009

    96. [96]

      Mishra, B.; Neralkar, M.; Hotha, S. Angew. Chem. Int. Ed. 2016, 55, 7786.  doi: 10.1002/anie.201511695

    97. [97]

      Fraser-Reid, B.; Lu, J.; Jayaprakash, K. N.; Lopez, J. C. Tetrahedron:Asymmetry 2006, 17, 2449.  doi: 10.1016/j.tetasy.2006.09.008

    98. [98]

      Islam, M.; Shinde, G. P.; Hotha, S. Chem. Sci. 2017, 8, 2033.  doi: 10.1039/C6SC04866H

    99. [99]

      Calin, O.; Eller, S.; Seeberger, P. H. Angew. Chem. Int. Ed. 2013, 52, 5862.  doi: 10.1002/anie.201210176

    100. [100]

      Naresh, K.; Schumacher, F.; Hahm, H. S.; Seeberger, P. H. Chem. Commun. 2017, 53, 9085.  doi: 10.1039/C7CC04380E

    101. [101]

      Yu, Y.; Kononov, A.; Delbianco, M.; Seeberger, P. H. Chem. Eur. J. 2018, 24, 6075.  doi: 10.1002/chem.v24.23

  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    3. [3]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    4. [4]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    5. [5]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    6. [6]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    9. [9]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    10. [10]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    11. [11]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    12. [12]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    15. [15]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    16. [16]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    17. [17]

      Peiqi Gao Jiao Zheng LiMiao Chen Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086

    18. [18]

      Weihua Jiang Yongsheng Zhou Qiaoqiao Teng . Progressive Teaching Model in the Practice and Exploration of Ideological and Political Education in Laboratory Courses: Taking the Organic Chemistry Experiment “Synthesis of Aspirin” as an Example. University Chemistry, 2024, 39(2): 99-104. doi: 10.3866/PKU.DXHX202306028

    19. [19]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    20. [20]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

Metrics
  • PDF Downloads(199)
  • Abstract views(5460)
  • HTML views(2224)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return