Citation: Wang Yongsheng, Zhao Yunlu, Zhao Zhenzhen, Lan Xiaolin, Xu Jinxia, Xu Weixiang, Duan Zhengkang. Study on Preparation of Cu-ZrO2 Catalyst Coated by Nitrogen-Doped Carbon and Catalytic Dehydrogenation Performance[J]. Acta Chimica Sinica, ;2019, 77(7): 661-668. doi: 10.6023/A19040124
-
Glyphosate is one of the most widely used herbicides in the world. Current production of glyphosate starts with iminodiacetic acid (IDA). One method of producing IDA starts with the catalytic dehydrogenation of diethanolamine (DEA) using Cu-ZrO2 (CZ), which is a fairly simple, pollution-free, and cost-effective process. The Cu-ZrO2 catalysts used in this dehydrogenation are fairly efficient and inexpensive, but they tend to agglomerate and inactivate. The development of highly efficient and stable Cu-ZrO2 catalyst is of great significance. Carbon coated nano-metal particles are a new type of nano-carbon/metal composite materials. Metal materials can be imparted in a small space due to the surface acidity and alkalinity of carbon coated materials and their unique structural characteristics, which is of great significance for the dispersion and oxidation resistance of the loaded nano-metal materials. In this study, melamine was used as a carbon source and a nitrogen source to prepare a Cu-ZrO2 nanocatalyst (CZ@CN catalyst) coated with nitrogen-doped carbon (CN) with core-shell structure. The effect of different molar ratios of copper and melamine on the catalyst was studied. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 physical adsorption and desorption test (BET), H2 temperature-programmed reduction (H2-TPR) were used to investigate the morphology and structure of the catalyst. The catalytic performance of the catalyst for the dehydrogenation of diethanolamine was investigated. When the molar ratio of copper to melamine is 4:1, the prepared CZ@CN-1 catalyst has the highest catalytic activity. The yield of sodium iminodiacetic acid is 92.80%, and the reaction time is shorter than that of ordinary CZ catalyst by 40%. The yield of sodium iminodiacetic acid still reaches 88.45% after reusing 8 times. The results showed that the introduction of the CN layer makes the catalyst exhibit more Lewis basicity. Meanwhile, it is beneficial to the activation of hydroxyl groups and the transfer of hydrogen in the dehydrogenation reaction. The CN layer can also stabilize copper nanoparticles and improve the stability of the catalyst.
-
-
[1]
Zhu, Y.; Kong, X.; Li, X.; Ding, G.; Zhu, Y.; Li, Y. W. ACS Catal. 2014, 4, 3612. doi: 10.1021/cs5009283
-
[2]
Duan, Z. K.; Li, S.; Xie, F.; Yan, J. H.; Zhang, T. Chem. Res. Appl. 2015, 27, 417. doi: 10.3969/j.issn.1004-1656.2015.04.001
-
[3]
Tang, Q. L.; Liu, Z. P. J. Phys. Chem. 2010, 114, 8423. doi: 10.1021/jp104246k
-
[4]
Agrell, J.; Birgersson, H.; Boutonnet, M.; Melián-Cabrera, I.; Navarro, R. M.; Fierro, J. L. G. J. Catal. 2003, 219, 389. doi: 10.1016/S0021-9517(03)00221-5
-
[5]
Huo, J. P.; Song, H. H.; Chen, X. H.; Zhao, S. Q.; Xu, C. M. Carbon Techniques. 2006, 25, 22.
-
[6]
Liu, J. Y.; Yang, P. J.; Zhang, J. F.; Ma, S. J. Petrochem. Technol. 2004, 33, 330. doi: 10.3321/j.issn:1000-8144.2004.04.008
-
[7]
Li, H. T.; Chen, H. R.; Zhang, Y.; Gao, C. G.; Zhao, Y. X. Chinese J. Catal. 2011, 32, 111.
-
[8]
Roy, R. K.; Lee, K. J. Biomed. Mater. Res. B 2010, 83B, 72.
-
[9]
Zhang, Z. Q.; Ge, C. X.; Chen, Y. G.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2019, 77, 60. doi: 10.3969/j.issn.0253-2409.2019.01.008
-
[10]
Su, D. S.; Zhang, J.; Frank, B.; Thomas, A.; Wang, X.; Parak-nowitsch, J.; Schlögl, R. ChemSusChem 2010, 3, 169. doi: 10.1002/cssc.v3:2
-
[11]
Mabena, L. F.; Sinha Ray, S.; Mhlanga, S. D.; Coville, N. J. Appl. Nanosci. 2011, 1, 67. doi: 10.1007/s13204-011-0013-4
-
[12]
Dai, X. Q.; Zhu, Y. B.; Xu, X. L.; Wen, J. Q. Chin. J. Org. Chem. 2017, 37, 577.
-
[13]
Watanabe, H.; Asano, S.; Fujita, S.; Yoshida, H.; Arai, M. ACS Catal. 2015, 5, 2886. doi: 10.1021/acscatal.5b00375
-
[14]
Zhang, P.; Wang, Q. N.; Yang, X.; Wang, D.; Li, W. C.; Zheng, Y. P.; Chen, M. S.; Lu, A. H. ChemCatChem 2017, 9, 505. doi: 10.1002/cctc.v9.3
-
[15]
Shi, R. N.; Zhao, J. X.; Liu, S. S.; Sun, W.; Li, H. X.; Hao, P. P.; Li, Z.; Ren, J. Carbon 2018, 130, 185. doi: 10.1016/j.carbon.2018.01.011
-
[16]
Wen, Z.; Liu, J.; Li, J. Adv. Mater. 2008, 20, 743. doi: 10.1002/(ISSN)1521-4095
-
[17]
Unnikrishnan, P.; Srinivas, D. Ind. Eng. Chem. Res. 2012, 51, 6356. doi: 10.1021/ie300678p
-
[18]
Hu, Q.; Yang, L.; Fan, G. L.; Li, F. Chem. Nano. Mat. 2016, 2, 888.
-
[19]
Wang, J.; Lei, Z.; Qin, H.; Zhang, L.; Li, F. Ind. Eng. Chem. Res. 2011, 50, 7120. doi: 10.1021/ie2000264
-
[20]
Hu, Q.; Fan, G.; Yang, L.; Cao, X.; Zhang, P.; Wang, B.; Li, F. Green Chem. 2016, 18, 2317. doi: 10.1039/C5GC02924D
-
[21]
Xu, J.; Shen, K.; Xue, B. J. Mol. Cayal. A 2013, 372, 105. doi: 10.1016/j.molcata.2013.02.019
-
[22]
ABUDUHEIREMU, Awati; Zhang, D. D.; HALIDAN, Maimaiti Chem. J. Chin. Univ. 2019, 40, 306. doi: 10.7503/cjcu20180597
-
[23]
Chen, S.; Bi, J.; Zhao, L.; Yang, C.; Ma, Y.; Wu, Q.; Wang, X.; Hu, Z. Adv. Mater. 2012, 24, 5593. doi: 10.1002/adma.201202424
-
[24]
Sharitfi, T.; Hu, G.; Jia, X.; Wagberg, T. ACS Nano 2012, 6, 8904. doi: 10.1021/nn302906r
-
[25]
Wang, X. X.; Zhang, L. H.; Lin, H. J.; Nong, Q. Y.; Wu, Y.; Wu, T. H.; He, Y. M. RSC Adv. 2014, 4, 40029. doi: 10.1039/C4RA06035K
-
[26]
Yang, Y.; Duan, Z.; Liu, W. Chem. Reac. Eng. Technol. 2001, 17, 210.
-
[27]
Balaraman, E.; Khaskin, E.; Leitus, G.; Milstein, D. Nat. Chem. 2013, 5, 122. doi: 10.1038/nchem.1536
-
[28]
Neurock, M.; Tao, Z.; Chemburkar, A.; Hibbitts, D. D.; Lglesia, E. Faraday Discuss. 2017, 197, 181.
-
[1]
-
-
[1]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[2]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[3]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[4]
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
-
[5]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[6]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[7]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[8]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[9]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[10]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[11]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[12]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[13]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[14]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[15]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[16]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[17]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[18]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[19]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[20]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[1]
Metrics
- PDF Downloads(11)
- Abstract views(1087)
- HTML views(104)