Citation: Zhao Yong, Li Shihong, Zhang Miaomiao, Liu Feng. ynthesis of β, γ-Unsaturated Esters and γ-Ketone Esters with Amino Acid Ester-Derived Katritzky Salts[J]. Acta Chimica Sinica, ;2019, 77(9): 916-921. doi: 10.6023/A19040121 shu

ynthesis of β, γ-Unsaturated Esters and γ-Ketone Esters with Amino Acid Ester-Derived Katritzky Salts

  • Corresponding author: Liu Feng, fliu2@suda.edu.cn
  • Received Date: 8 April 2019
    Available Online: 22 September 2019

    Fund Project: Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 18KJA350001)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China 18KJA350001

Figures(3)

  • β, γ-Unsaturated ester and γ-ketone ester are important synthons, which can be used to convert into various heterocyclic compounds, natural products and pharmaceuticals. The development of efficient methods for the synthesis of β, γ-unsaturated ester and γ-ketone ester compounds has attracted much attention from synthetic chemists. By using Katritzky pyridinium salts as radical precursors, commercially available Ru(bpy)3Cl2•6H2O as photocatalyst, K2CO3 as base, and dichloromethane (DCM) as solvent, we developed a simple and efficient method for the synthesis of a series of β, γ-unsaturated esters and γ-ketone esters by C-N bond activation. Bench-stable and easily handled redox-active Katritzky pyridinium salts derived from abundant amino acids were used as radical precursors for the alkylation of 1, 1-diarylethylene and aryl enol silyl ether species upon irradiation with household blue LEDs. The reaction displays an excellent functional group tolerance and a potential utility for amino acids functionalization, allowing to access desired products in moderate to good yields. Moreover, under air conditions, the reaction has moderate compatibility. Scaling up the reaction in grams, the yield was higher and the target product was obtained with 91% yield. Control experiments demonstrated that the photocatalyst and visible light were both essential for the success of the reaction. Performing the reaction in the presence of radical scavenger TEMPO, did lead to no desired product 3a formation. Moreover, a TEMPO-trapped product was determined by MS analysis and NMR, indicating a radical-type mechanism of this reaction. It is of note that this protocol could offer a powerful complementary strategy for the use of amino acids that were also employed in photoredox-catalyzed decarboxylative reactions. A representative procedure for this reaction is as following:A 10 mL oven-dried Schlenk-tube was charged with 1a (111.5 mg, 0.20 mmol), Ru(bpy)3Cl2•6H2O (3.0 mg, 2 mol%), K2CO3 (55.2 mg, 0.40 mmol) and a magnetic stirring bar. The tube was evacuated and back-filled three times with argon. A solution of 2a (53 μL, 0.30 mmol) in DCM (2 mL) was injected into the tube by syringe. The resulting mixture was stirred at room temperature upon irradiation with blue LEDs (22 W) and monitored by thin-layer chromatography (TLC). After completion, the solvent was then removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to give 3a as an off-white solid (42.7 mg, 65% yield).
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      For selected recent examples, see: (a) Kautzky, J. A.; Wang, T.; Evans, R. W.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 6522; (b) Bloom, S.; Liu, C.; K lmel, D. K.; Qiao, J.-X.; Zhang, Y.; Poss, M. A.; Ewing, W. R.; MacMillan, D. W. C. Nature Chem. 2018, 10, 205; (c) Zhao, Y.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2018, 20, 224; (d) Cheng, W.-M.; Shang, R.; Fu, M.-C.; Fu, Y. Chem. Eur. J. 2017, 23, 2537; (e) Wang, D.; Zhu, N.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2017, 139, 15632; (f) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Science 2017, 357, 283; (g) Garza-Sanchez, R. A.; Tlahuext-Aca, A.; Tavakoli, G.; Glorius, F. ACS Catal. 2017, 7, 4057; (h) Cheng, W.-M.; Shang, R.; Fu, Y. ACS Catal. 2017, 7, 907; (i) McCarver, S. J.; Qiao, J.-X.; Carpenter, J.; Borzilleri, R. M.; Poss, M. A.; Eastgate, M. D.; Miller, M.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2017, 56, 728; (j) Johnston, C. P.; Smith, R.; Allmendinger, T. S.; MacMillan, D. W. C. Nature 2016, 536, 322; (k) Müller, D. S.; Untiedt, N. L.; Dieskau, A. P.; Lackner, G. L.; Overman, L. E. J. Am. Chem. Soc. 2015, 137, 660.

    4. [4]

      For selected recent examples, see: (a) Zhou, W.-J.; Cao, G.-M.; Shen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683; (b) Nuhant, P.; Oderinde, M. S.; Genovino, J.; Juneau, A.; Gagné, Y.; Allais, C.; Chinigo, G. M.; Choi, C.; Sach, N. W.; Bernier, L.; Fobian, Y. M.; Bundesmann, M. W.; Khunte, B.; Frenette, M.; Fadeyi, O. O. Angew. Chem., Int. Ed. 2017, 56, 15309; (c) Zhang, P.; Le, C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 8084; (d) Feng, Z.; Min, Q.-Q.; Zhao, H.-Y.; Gu, J.-W.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 1270; (e) Iqbal, N.; Choi, S.; Kim, E.; Cho, E. J. J. Org. Chem. 2012, 77, 11383.

    5. [5]

      For selected recent examples, see: (a) Lima, F.; Sharma, U. K.; Grunenberg, L.; Saha, D.; Johannsen, S.; Sedelmeier, J.; Van der Eycken, E. V.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 15136; (b) Matsui, J. K.; Primer, D. N.; Molander, G. A. Chem. Sci. 2017, 8, 3512; (c) Amani, J.; Molander, G. A. Org. Lett. 2017, 19, 3612; (d) Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2017, 139, 9847; (e) Lima, F.; Kabeshov, M. A.; Tran, D. N.; Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V. Angew. Chem., Int. Ed. 2016, 55, 14085; (f) Huo, H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936; (g) El Khatib, M.; Serafim, R. A. M.; Molander, G. A. Angew. Chem., Int. Ed. 2016, 55, 254; (h) Primer, D. N.; Karakaya, I.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2015, 137, 2195.

    6. [6]

      For selected recent examples, see: (a) Lang, S. B.; Wiles, R. J.; Kelly, C. B.; Molander, G. A. Angew. Chem., Int. Ed. 2017, 56, 15073; (b) Zheng, S.; Primer, D. N.; Molander, G. A. ACS Catal. 2017, 7, 7957; (c) Remeur, C.; Kelly, C. B.; Patel, N. R.; Molander, G. A. ACS Catal. 2017, 7, 6065; (d) Lin, K.; Wiles, R. J.; Kelly, C. B.; Davies, G. H. M.; Molander, G. A. ACS Catal. 2017, 7, 5129; (e) Patel, N. R.; Kelly, C. B.; Siegenfeld, A. P.; Molander, G. A. ACS Catal. 2017, 7, 1766; (f) Deng, Y.; Liu, Q. Smith, A. B. J. Am. Chem. Soc. 2017, 139, 9487; (g) Jouffroy, M.; Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 475; (h) Corc, V.; Chamoreau, L.-M.; Derat, E.; Goddard, J.-P.; Ollivier, C.; Fen-sterbank, L. Angew. Chem., Int. Ed. 2015, 54, 11414.

    7. [7]

      For selected recent examples, see: (a) Slutskyy, Y.; Jamison, C. R.; Zhao, P.; Lee, J.; Rhee, Y. H.; Overman, L. E. J. Am. Chem. Soc. 2017, 139, 7192; (b) Zhang, X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 13862; (c) Lackner, G. L.; Quasdorf, K. W.; Pratsch, G.; Overman, L. E. J. Org. Chem. 2015, 80, 6012; (d) Nawrat, C. C.; Jamison, C. R.; Slutskyy, Y.; MacMillan, D. W. C.; Overman, L. E. J. Am. Chem. Soc. 2015, 137, 11270.

    8. [8]

      The Generation of Aryl Radicals Can be Achieved via the Reductive Cleavage of C(sp2)-N Bonds of the Aryl Diazonium Salts, For a review, see: Ghosh, I.; Marzo, L.; Das, A.; Shaikh, R.; König, B. Acc. Chem. Res. 2016, 49, 1566.

    9. [9]

      (a) Eds.: Pollegioni, L.; Servi, S. Nonnatural Amino Acids: Methods and Protocols, Springer, New York, 2012, pp. 1~249; (b) Ager, D. J. Amino Acids, Peptides and Proteins in Organic Chemistry, Ed.: Hughes, A. B., Wiley-VCH, Weinheim, 2009, Vol. 1, pp. 495~526.

    10. [10]

      Katritzky, A. R.; Gruntz, U.; Kenny, D. H.; Rezende, M. C.; Sheikh, H. J. Chem. Soc. Perkin Trans. 1 1979, 430.

    11. [11]

      Ouyang, K.; Hao, W.; Zhang, W.-X.; Xi, Z. Chem. Rev. 2015, 115, 12045.  doi: 10.1021/acs.chemrev.5b00386

    12. [12]

      (a) Basch, C. H.; Liao, J.; Xu, J.; Piane, J. J.; Watson, M. P. J. Am. Chem. Soc. 2017, 139, 5313; (b) Liao, J.; Guan, W.; Boscoe, B. P.; Tucker, J. W.; Tomlin, J. W.; Garnsey, M. R.; Watson, M. P. Org. Lett. 2018, 20, 3030; (c) Guan, W.; Liao, J.; Watson, M. P. Synthesis 2018, 50, 3231.

    13. [13]

      Grimshaw, J.; Moore, S.; Grimshaw, J. T. Acta Chem. Scand. Ser. B 1983, 37, 485.

    14. [14]

      (a) Klauck, F. J. R.; James, M. J.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 12336; (b) Klauck, F. J. R.; Yoon, H.; James, M. J.; Lautens, M.; Glorius, F. ACS Catal. 2019, 9, 236; (c) Sandfort, F.; Strieth-Kalthoff, F.; Klauck, F. J. R.; James, M. J.; Glorius, F. Chem. Eur. J. 2018, 24, 17210.

    15. [15]

      (a) Wu, J.-J.; He, L.; Noble, A.; Aggarwal, V. K. J. Am. Chem. Soc. 2018, 140, 10700; (b) Wu, J.-J.; Grant, P. S.; Li, X.-B.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2019, 58, 10.1002/anie.201814452.

    16. [16]

      Hu, J.; Wang, G.; Li, S.; Shi, Z. Angew. Chem., Int. Ed. 2018, 57, 15227.  doi: 10.1002/anie.201809608

    17. [17]

      Ociepa, M.; Turkowska, J.; Gryko, D. ACS Catal. 2018, 8, 11362.  doi: 10.1021/acscatal.8b03437

    18. [18]

      (a) Zhu, Z.-F.; Zhang, M.-M.; Liu, F. Org. Biomol. Chem. 2019, 17, 1531; (b) Zhang, M.-M.; Liu, F. Org. Chem. Front. 2018, 5, 3443.

    19. [19]

      Brase, S.; Waegell, B.; de Meijere, A. Synthesis 1998, 2, 148.
       

    20. [20]

      Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2002, 124, 6514.  doi: 10.1021/ja026296l

    21. [21]

      Tang, S.; Liu, K.; Liu, C.; Lei, A.-W. Chem. Soc. Rev. 2015, 44, 1070.  doi: 10.1039/C4CS00347K

    22. [22]

      For selected recent examples with aliphatic carboxylic acids, see: (a) Cao, H.; Jiang, H.; Feng, H.; Kwan, J. M. C.; Liu, X.; Wu, J. J. Am. Chem. Soc. 2018, 140, 16360; (b) Zhou, H.; Ge, L.; Song, J.; Jian, W.; Li, Y.; Li, C.; Bao, H. iScience 2018, 3, 255; (c) Wang, G.-Z.; Shang, R.; Fu, Y. Org. Lett. 2018, 20, 888; (d) Koy, M.; Sandfort, F.; Tlahuext-Aca, A.; Quach, L.; Daniliuc, C. G.; Glorius, F. Chem. Eur. J. 2018, 24, 4552; (e) Zhu, N.; Zhao, J.; Bao, H. Chem. Sci. 2017, 8, 2081.

    23. [23]

      For selected examples with alkyl halides, see: (a) Xiong, H.; Li, Y.; Qian, B.; Wei, R.; Van der Eycken, E. V.; Bao, H. Org. Lett., 2019, 21, 776; (b) Kurandina, D.; Rivas, M.; Radzhabov, M.; Gevorgyan, V. Org. Lett. 2018, 20, 357; (c) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 18307; (d) Kurandina, D.; Parasram, M.; Gevorgyan, V. Angew. Chem., Int. Ed. 2017, 56, 14212; (e) Liu, W.; Li, L.; Chen, Z.; Li, C.-J. Org. Biomol. Chem. 2015, 13, 6170; (f) Weiss, M. E.; Kreis, L. M.; Lauber, A.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 11125; (g) Affo, W. H.; Fujioka, T.; Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K.; Imamura, Y.; Mizuta, T.; Miyoshi, K. J. Am. Chem. Soc. 2006, 128, 8068; (h) Na, Y. G.; Park, S. Y.; Han, S. B.; Han, H.; Ko, S. W.; Chang, S. J. Am. Chem. Soc. 2004, 126, 250.

    24. [24]

      (a) Liu, C.; Tang, S.; Liu, D.; Yuan, J.; Zheng, L.; Meng, L.; Lei, A.-W. Angew. Chem., Int. Ed. 2012, 51, 3638; (b) Nishikata, T.; Noda, Y.; Fujimoto, R.; Sakashita, T. J. Am. Chem. Soc. 2013, 135, 16372; (c) Liu, Q.; Yi, H.; Liu, J.; Yang, Y.-H.; Zhang, X.; Zeng, Z.-Q.; Lei, A.-W. Chem. Eur. J. 2013, 19, 5120.

    25. [25]

      Jiang, X.; Zhang, M.-M.; Xiong, W.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 2402.  doi: 10.1002/anie.201813689

  • 加载中
    1. [1]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    10. [10]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    11. [11]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    12. [12]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(27)
  • Abstract views(2014)
  • HTML views(567)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return