Citation: Peng Zhengkang, Ding Huimin, Chen Rufan, Gao Chao, Wang Cheng. Research Progress in Covalent Organic Frameworks for Energy Storage and Conversion[J]. Acta Chimica Sinica, ;2019, 77(8): 681-689. doi: 10.6023/A19040118 shu

Research Progress in Covalent Organic Frameworks for Energy Storage and Conversion

  • Corresponding author: Wang Cheng, chengwang@whu.edu.cn
  • Received Date: 7 April 2019
    Available Online: 20 August 2019

    Fund Project: the National Natural Science Foundation of China 21572170Project supported by the National Natural Science Foundation of China (No. 21572170)

Figures(6)

  • Covalent organic frameworks (COFs) are a class of porous crystalline materials consisting of organic units connected through covalent bonds. Due to their low density, high surface area and high thermal stability, COFs have found interesting applications in many fields, including molecular adsorption and separation, sensing, catalysis and optoelectronics devices. In particular, two-dimensional (2D) COFs have attracted increasing attention in energy fields. In this perspective, the applications of 2D COFs in energy storage (lithium ion batteries, lithium-sulfur batteries, supercapacitor and fuel cells) and energy conversion (water splitting and reduction of carbon dioxide) are reviewed. In addition, we will also discuss the remaining challenging issues.
  • 加载中
    1. [1]

      (a) Das, S.; Heasman, P.; Ben, T.; Qiu, S. Chem. Rev, 2017, 117, 1515. (b) Huang, N.; Wang, P.; Jiang, D. Nat. Rev. Mater. 2016, 1, 16068. (c) Waller, P. J.; Gandara, F.; Yaghi, O. M. Acc. Chem. Res. 2015, 48, 3053. (d) Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      C té, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.  doi: 10.1126/science.1120411

    6. [6]

      (a) Zeng, Y.; Zou, R.; Zhao, Y. Adv. Mater. 2016, 28, 2855. (b) Kang, Z.; Peng, Y.; Qian, Y.; Yuan, D.; Addicoat, M. A.; Heine, T.; Hu, Z.; Tee, L.; Guo, Z.; Zhao, D. Chem. Mater. 2016, 28, 1277. (c) Song, J. R.; Sun, J.; Liu, J.; Huang, Z. T.; Zheng, Q. Y. Chem. Commun. 2014, 50, 788. (d) Zhou, T. Y.; Xu, S. Q.; Wen, Q.; Pang, Z. F.; Zhao, X. J. Am. Chem. Soc. 2014, 136, 15885.

    7. [7]

    8. [8]

      (a) Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. J. Am. Chem. Soc. 2011, 133, 19816. (b) Fang, Q.; Gu, S.; Zheng, J.; Zhuang, Z.; Qiu, S.; Yan, Y. Angew. Chem. Int. Ed. 2014, 53, 2878. (c) Lu, S.; Hu, Y.; Wan, S.; McCaffrey, R.; Jin, Y.; Gu, H.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 17082. (d) Zhang, J.; Han, X.; Wu, X.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2017, 139, 8277. (e) Wei, P. F.; Qi, M. Z.; Wang, Z. P.; Ding, S. Y.; Yu, W.; Liu, Q.; Wang, L. K.; Wang, H. Z.; An, W. K.; Wang, W. J. Am. Chem. Soc. 2018, 140, 4623. (f) Chen, R.; Shi, J. L.; Ma, Y.; Lin, G.; Lang, X.; Wang, C. Angew. Chem. Int. Ed. 2019, 58, 6430.

    9. [9]

      (a) Spitler, E. L.; Dichtel, W. R. Nat. Chem. 2010, 2, 672. (b) Ding, H.; Li, J.; Xie, G.; Lin, G.; Chen, R.; Peng, Z.; Yang, C.; Wang, B.; Sun, J.; Wang, C. Nat. Commun. 2018, 9, 5234. (c) Feng, X.; Liu, L.; Honsho, Y.; Saeki, A.; Seki, S.; Irle, S.; Dong, Y.; Nagai, A.; Jiang, D. Angew. Chem. Int. Ed. 2012, 51, 2618. (d) Sun, B.; Zhu, C.-H.; Liu, Y.; Wang, C.; Wan, L.-J.; Wang, D. Chem. Mater. 2017, 29, 4367. (e) Medina, D. D.; Sick, T.; Bein, T. Adv. Energy Mater. 2017, 7, 1700387.

    10. [10]

    11. [11]

      (a) Feng, X.; Chen, L.; Honsho, Y.; Saengsawang, O.; Liu, L.; Wang, L.; Saeki, A.; Irle, S.; Seki, S.; Dong, Y.; Jiang, D. Adv. Mater. 2012, 24, 3026. (b) Chen, X.; Addicoat, M.; Irle, S.; Nagai, A.; Jiang, D. J. Am. Chem. Soc. 2013, 135, 546. (c) Colson, J. W.; Dichtel, W. R. Nat. Chem. 2013, 5, 453. (d) Yang, L.; Wei, D.-C. Chin. Chem. Lett. 2016, 27, 1395.

    12. [12]

      (a) Lohse, M. S.; Stassin, T.; Naudin, G.; Wuttke, S.; Ameloot, R.; De Vos, D.; Medina, D. D.; Bein, T. Chem. Mater. 2016, 28, 626. (b) Waller, P. J.; Lyle, S. J.; Osborn Popp, T. M.; Diercks, C. S.; Reimer, J. A.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 15519. (c) Zhuang, X.; Zhao, W.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.; Feng, X. Polym. Chem. 2016, 7, 4176. (d) Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Science 2017, 357, 673. (e) Li, X.; Zhang, C.; Cai, S.; Lei, X.; Altoe, V.; Hong, F.; Urban, J. J.; Ciston, J.; Chan, E. M.; Liu, Y. Nat. Commun. 2018, 9, 2998. (f) Han, X.; Huang, J.; Yuan, C.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2018, 140, 892. (g) Zhang, B.; Wei, M.; Mao, H.; Pei, X.; Alshmimri, S. A.; Reimer, J. A.; Yaghi, O. M. J. Am. Chem. Soc. 2018, 140, 12715.

    13. [13]

      Chu, S.; Cui, Y.; Liu, N. Nat. Mater. 2016, 16, 16.

    14. [14]

      (a) Zhu, J.; Yang, D.; Yin, Z.; Yan, Q.; Zhang, H. Small 2014, 10, 3480. (b) Zhang, Q.; Uchaker, E.; Candelaria, S. L.; Cao, G. Chem. Soc. Rev. 2013, 42, 3127. (c) Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; Schalkwijk, W. Nat. Mater. 2005, 4, 366.

    15. [15]

      Hu, L. H.; Wu, F. Y.; Lin, C. T.; Khlobystov, A. N.; Li, L. J. Nat. Commun. 2013, 4, 1687.  doi: 10.1038/ncomms2705

    16. [16]

      (a) Whittingham, M. S. Chem. Rev. 2004, 104, 4271. (b) Ellis, B. L.; Lee, K. T.; Nazar, L. F. Chem. Mater. 2010, 22, 691. (c) Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.

    17. [17]

    18. [18]

      (a) Mike, J. F.; Lutkenhaus, J. L. ACS Macro Lett. 2013, 2, 839. (b) Yang, Y.; Wang, C.; Yue, B.; Gambhir, S.; Too, C. O.; Wallace, G. G. Adv. Energy Mater. 2012, 2, 266.

    19. [19]

      (a) Wu, H.; Shevlin, S. A.; Meng, Q.; Guo, W.; Meng, Y.; Lu, K.; Wei, Z.; Guo, Z. Adv. Mater. 2014, 26, 3338. (b) Song, Z.; Qian, Y.; Liu, X.; Zhang, T.; Zhu, Y.; Yu, H.; Otani, M.; Zhou, H. Energy Environ. Sci. 2014, 7, 4077. (c) Song, Z.; Zhan, H.; Zhou, Y. Angew. Chem. Int. Ed. 2010, 49, 8444. (d) Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribiere, P.; Poizot, P.; Tarascon, J. M. Nat. Mater. 2009, 8, 120. (e) Chen, H.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J.-M.; Poizot, P. J. Am. Chem. Soc. 2009, 131, 8984.

    20. [20]

      (a) Zhan, L.; Song, Z.; Zhang, J.; Tang, J.; Zhan, H.; Zhou, Y.; Zhan, C. Electrochim. Acta 2008, 53, 8319. (b) Zhang, J. Y.; Kong, L. B.; Zhan, L. Z.; Tang, J.; Zhan, H.; Zhou, Y. H.; Zhan, C. M. J. Power Sources 2007, 168, 278.

    21. [21]

      (a) J hnert, T.; Hager, M. D.; Schubert, U. S. J. Mater. Chem. A 2014, 2, 15234. (b) Janoschka, T.; Hager, M. D.; Schubert, U. S. Adv. Mater. 2012, 24, 6397. (c) Nakahara, K.; Oyaizu, K.; Nishide, H. Chem. Lett. 2011, 40, 222. (d) Morita, Y.; Nishida, S.; Murata, T.; Moriguchi, M.; Ueda, A.; Satoh, M.; Arifuku, K.; Sato, K.; Takui, T. Nat. Mater. 2011, 10, 947.

    22. [22]

      Yang, D.-H.; Yao, Z.-Q.; Wu, D.; Zhang, Y.-H.; Zhou, Z.; Bu, X.-H. J. Mater. Chem. A 2016, 4, 18621  doi: 10.1039/C6TA07606H

    23. [23]

      Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R.; Jiang, D. Sci. Rep. 2015, 5, 8225.  doi: 10.1038/srep08225

    24. [24]

      Wang, S.; Wang, Q.; Shao, P.; Han, Y.; Gao, X.; Ma, L.; Yuan, S.; Ma, X.; Zhou, J.; Feng, X.; Wang, B. J. Am. Chem. Soc. 2017, 139, 4258.  doi: 10.1021/jacs.7b02648

    25. [25]

      Lei, Z.; Yang, Q.; Xu, Y.; Guo, S.; Sun, W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Nat. Commun. 2018, 9, 576.  doi: 10.1038/s41467-018-02889-7

    26. [26]

      (a) Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y. Chem. Rev. 2016, 116, 140. (b) Thangadurai, V.; Narayanan, S.; Pinzaru, D. Chem. Soc. Rev. 2014, 43, 4714.

    27. [27]

      (a) Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Chem. Mater. 2015, 28, 266. (b) Xin, S.; You, Y.; Wang, S.; Gao, H.-C.; Yin, Y.-X.; Guo, Y.-G. ACS Energy Lett. 2017, 2, 1385. (c) Jeong, K.; Park, S.; Lee, S.-Y. J. Mater. Chem. A 2019, 7, 1917.

    28. [28]

      (a) Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. Chem. Soc. Rev. 2017, 46, 797. (b) Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.-P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D.; Denoyel, R.; Armand, M. Nat. Mater. 2013, 12, 452.

    29. [29]

      Du, Y.; Yang, H.; Whiteley, J. M.; Wan, S.; Jin, Y.; Lee, S. H.; Zhang, W. Angew. Chem. Int. Ed. 2016, 55, 1737.  doi: 10.1002/anie.201509014

    30. [30]

      Chen, H.; Tu, H.; Hu, C.; Liu, Y.; Dong, D.; Sun, Y.; Dai, Y.; Wang, S.; Qian, H.; Lin, Z.; Chen, L. J. Am. Chem. Soc. 2018, 140, 896.  doi: 10.1021/jacs.7b12292

    31. [31]

      Guo, Z.; Zhang, Y.; Dong, Y.; Li, J.; Li, S.; Shao, P.; Feng, X.; Wang, B. J. Am. Chem. Soc. 2019, 141, 1923.  doi: 10.1021/jacs.8b13551

    32. [32]

      Xu, Q.; Tao, S.; Jiang, Q.; Jiang, D. J. Am. Chem. Soc. 2018, 140, 7429.  doi: 10.1021/jacs.8b03814

    33. [33]

      Zhang, G.; Hong, Y. L.; Nishiyama, Y.; Bai, S.; Kitagawa, S.; Horike, S. J. Am. Chem. Soc. 2019, 141, 1227.  doi: 10.1021/jacs.8b07670

    34. [34]

      (a) Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Adv. Mater. 2017, 29, 1601759. (b) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2011, 11, 19. (c) Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L.F. Nat. Energy 2016, 1, 16132.

    35. [35]

      (a) Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem. Int. Ed. 2013, 52, 13186. (b) Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. (c) Zhao, Y.; Wu, W.; Li, J.; Xu, Z.; Guan, L. Adv. Mater. 2014, 27, 1694. (d) Cheng, Z.; Pan, H.; Zhong, H.; Xiao, Z.; Li, X.; Wang, R. Adv. Funct. Mater. 2018, 28, 1707597.

    36. [36]

      (a) Song, J.; Gordin, M. L.; Xu, T.; Chen, S.; Yu, Z.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y.; Wang, D. Angew. Chem. Int. Ed. 2015, 54, 4325. (b) Yang, C. P.; Yin, Y. X.; Ye, H.; Jiang, K. C.; Zhang, J.; Guo, Y. G. ACS Appl. Mater. Interfaces 2014, 6, 8789.

    37. [37]

      Liao, H.; Ding, H.; Li, B.; Ai, X.; Wang, C. J. Mater. Chem. A 2014, 2, 8854.  doi: 10.1039/C4TA00523F

    38. [38]

      Liao, H.; Wang, H.; Ding, H.; Meng, X.; Xu, H.; Wang, B.; Ai, X.; Wang, C. J. Mater. Chem. A 2016, 4, 7416.  doi: 10.1039/C6TA00483K

    39. [39]

      Meng, Y.; Lin, G.; Ding, H.; Liao, H.; Wang, C. J. Mater. Chem. A 2018, 6, 17186.  doi: 10.1039/C8TA05508D

    40. [40]

      Xu, F.; Yang, S.; Jiang, G.; Ye, Q.; Wei, B.; Wang, H. ACS Appl. Mater. Interfaces 2017, 9, 37731.  doi: 10.1021/acsami.7b10991

    41. [41]

      (a) Mclntosh, S.; Gorte, R. J. Chem. Rev. 2004, 104, 4845. (b) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.

    42. [42]

      (a) Schmidt-Rohr, K.; Chen, Q. Nat. Mater. 2008, 7, 75. (b) Mauritz, K. A. Chem. Rev. 2004, 104, 4535. (c) Kreuer, K.-D.; Paddison, S. J.; Spohr, E.; Schuster, M. Chem. Rev. 2004, 104, 4637.

    43. [43]

      (a) Devanathan, R. Energy Environ. Sci. 2008, 1, 101. (b) Peckham, T. J.; Holdcroft, S. Adv. Mater. 2010, 22, 4667.

    44. [44]

      (a) Rikukawa, M.; Sanui, K. Prog. Polym. Sci. 2000, 25, 1463. (b) Paddison, S. J. Annu. Rev. Mater. Res. 2003, 33, 289.

    45. [45]

      (a) Horike, S.; Umeyama, D.; Kitagawa, S. Acc. Chem. Res. 2013, 46, 2376. (b) Hurd, J. A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C. I.; Moudrakovski, I. L.; Shimizu, G. K. Nat. Chem. 2009, 1, 705. (c) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.

    46. [46]

      Chandra, S.; Kundu, T.; Kandambeth, S.; Babarao, R.; Marathe, Y.; Kunjir, S. M.; Banerjee, R. J. Am. Chem. Soc. 2014, 136, 6570.  doi: 10.1021/ja502212v

    47. [47]

      Xu, H.; Tao, S.; Jiang, D. Nat. Chem. 2016, 15, 722.

    48. [48]

      Chandra, S.; Kundu, T.; Dey, K.; Addicoat, M.; Heine, T.; Banerjee, R. Chem. Mater. 2016, 28, 1489.  doi: 10.1021/acs.chemmater.5b04947

    49. [49]

      Sasmal, H. S.; Aiyappa, H. B.; Bhange, S. N.; Karak, S.; Halder, A.; Kurungot, S.; Banerjee, R. Angew. Chem. Int. Ed. 2018, 57, 108.

    50. [50]

      Chen, X.; Paul, R.; Dai, L. Natl. Sci. Rev. 2017, 4, 453.  doi: 10.1093/nsr/nwx009

    51. [51]

      Li, X.; Wei, B. Nano Energy 2013, 2, 159.  doi: 10.1016/j.nanoen.2012.09.008

    52. [52]

      Wang, Y.; Song, Y.; Xia, Y. Chem. Soc. Rev. 2016, 45, 5925.  doi: 10.1039/C5CS00580A

    53. [53]

      DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruna, H. D.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 16821  doi: 10.1021/ja409421d

    54. [54]

      DeBlase, C. R.; Hernandez-Burgos, K.; Silberstein, K. E.; Rodrıguez-Calero, G. G.; Bisbey, R. P.; Abruña, H. D.; Dichtel, W. R. ACS Nano 2015, 9, 3178.  doi: 10.1021/acsnano.5b00184

    55. [55]

      Mulzer, C. R.; Shen, L; Bisbey, R. P.; McKone, J. R.; Zhang, N.; Abruña, H. D.; Dichtel, W. R. ACS Cent. Sci. 2016, 2, 667.  doi: 10.1021/acscentsci.6b00220

    56. [56]

      Xu, F.; Xu, H.; Chen, X.; Wu, D.; Wu, Y.; Liu, H.; Gu, C.; Fu, R.; Jiang, D. Angew. Chem. Int. Ed. 2015, 54, 6814.  doi: 10.1002/anie.201501706

    57. [57]

      Chandra, S.; Roy Chowdhury, D.; Addicoat, M.; Heine, T.; Paul, A.; Banerjee, R. Chem. Mater. 2017, 29, 2074.  doi: 10.1021/acs.chemmater.6b04178

    58. [58]

      Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Nat. Mater. 2016, 16, 57.

    59. [59]

      Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Nat. Mater. 2016, 16, 57.

    60. [60]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37.  doi: 10.1038/238037a0

    61. [61]

      (a) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. (b) Chen, S.; Takata, T.; Domen, K. Nat. Rev. Mater. 2017, 2, 17050.

    62. [62]

      (a) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. (b) Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. J. Am. Chem. Soc. 2014, 136, 1730.

    63. [63]

      (a) Sprick, R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. J. Am. Chem. Soc. 2015, 137, 3265. (b) Li, L.; Cai, Z.; Wu, Q.; Lo, W. Y.; Zhang, N.; Chen, L. X.; Yu, L. J. Am. Chem. Soc. 2016, 138, 7681. (c) Yang, C.; Ma, B. C.; Zhang, L.; Lin, S.; Ghasimi, S.; Landfester, K.; Zhang, K. A.; Wang, X. Angew. Chem. Int. Ed. 2016, 55, 9202.

    64. [64]

      (a) Woods, D. J.; Sprick, R. S.; Smith, C. L.; Cowan, A. J.; Cooper, A. I. Adv. Energy Mater. 2017, 7, 1700479. (b) Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N. J.; Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Angew. Chem. Int. Ed. 2016, 55, 1792.

    65. [65]

      Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. Chem. Sci. 2014, 5, 2789.  doi: 10.1039/C4SC00016A

    66. [66]

      Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V. Nat. Commun. 2015, 6, 8508.  doi: 10.1038/ncomms9508

    67. [67]

      Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomacker, R.; Thomas, A.; Schmidt, J. J. Am. Chem. Soc. 2018, 140, 1423.  doi: 10.1021/jacs.7b11255

    68. [68]

      Wang, X.; Chen, L.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. Nat. Chem. 2018, 10, 1180.  doi: 10.1038/s41557-018-0141-5

    69. [69]

      Berardi, S.; Drouet, S.; Francàs, L.; Gimbert-Suri ach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Chem. Soc. Rev. 2014, 43, 7501.  doi: 10.1039/C3CS60405E

    70. [70]

      (a) Reier, T.; Oezaslan, M.; Strasser, P. ACS Catal. 2012, 2, 1765. (b) Sardar, K.; Petrucco, E.; Hiley, C. I.; Sharman, J. D.; Wells, P. P.; Russell, A. E.; Kashtiban, R. J.; Sloan, J.; Walton, R. I. Angew. Chem. Int. Ed. 2014, 53, 10960.

    71. [71]

      (a) Chang, J.; Xiao, Y.; Xiao, M.; Ge, J.; Liu, C.; Xing, W. ACS Catal. 2015, 5, 6874. (b) Zhang, C.; Antonietti, M.; Fellinger, T.-P. Adv. Funct. Mater. 2014, 24, 7655. (c) Wu, L.; Li, Q.; Wu, C. H.; Zhu, H.; Mendoza-Garcia, A.; Shen, B.; Guo, J.; Sun, S. J. Am. Chem. Soc. 2015, 137, 7071. (d) Zhang, G.; Huang, C.; Wang, X. Small, 2015, 11, 1215.

    72. [72]

      Blakemore, J. D.; Crabtree, R. H.; Brudvig, G. W. Chem. Rev. 2015, 115, 12974.  doi: 10.1021/acs.chemrev.5b00122

    73. [73]

      Aiyappa, H. B.; Thote, J.; Shinde, D. B.; Banerjee, R.; Kurungot, S. Chem. Mater. 2016, 28, 4375.  doi: 10.1021/acs.chemmater.6b01370

    74. [74]

      Mullangi, D.; Dhavale, V.; Shalini, S.; Nandi, S.; Collins, S.; Woo, T.; Kurungot, S.; Vaidhyanathan, R. Adv. Energy Mater. 2016, 6, 1600110.  doi: 10.1002/aenm.201600110

    75. [75]

      Nandi, S.; Singh, S. K.; Mullangi, D.; Illathvalappil, R.; George, L.; Vinod, C. P.; Kurungot, S.; Vaidhyanathan, R. Adv. Energy Mater. 2016, 6, 1601189.  doi: 10.1002/aenm.201601189

    76. [76]

      (a) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729. (b) Gray, H. B. Nat. Chem. 2009, 1, 7.

    77. [77]

      (a) Zhao, G.; Huang, X.; Wang, X.; Wang, X. J. Mater. Chem. A 2017, 5, 21625. (b) Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew. Chem. Int. Ed. 2013, 52, 7372. (c) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637. (d) Thampi, K. R.; Kiwi, J.; Gr tzel, M. Nature 1987, 327, 506. (e) Tu, W.; Zhou, Y.; Zou, Z. Adv. Mater. 2014, 26, 4607.

    78. [78]

      (a) Lin, W.; Frei, H. J. Am. Chem. Soc. 2005, 127, 1610. (b) Anpo, M.; Takeuchi, M. J. Catal. 2003, 216, 505. (c) Shioya, Y.; Ikeue, K.; Ogawa, M.; Anpo, M. Appl. Catal. A: General 2003, 254, 251. (d) Matsuoka, M.; Anpo, M. J. Photochem. Photobiol. C: Photochem. Rev. 2003, 3, 225. (e) Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T. Catal. Today 1998, 44, 327. (f) Anpo, M. J. CO2 Util. 2013, 1, 8. (g) Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Chem. Rev. 2014, 114, 9919.

    79. [79]

      Yang, S.; Hu, W.; Zhang, X.; He, P.; Pattengale, B.; Liu, C.; Cendejas, M.; Hermans, I.; Zhang, X.; Zhang, J.; Huang, J. J. Am. Chem. Soc. 2018, 140, 14614.  doi: 10.1021/jacs.8b09705

    80. [80]

      Lin, S.; Diercks, C. S.; Zhang, Y.-B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Science 2015, 349, 1208.  doi: 10.1126/science.aac8343

    81. [81]

      Diercks, C. S.; Lin, S.; Kornienko, N.; Kapustin, E. A.; Nichols, E. M.; Zhu, C.; Zhao, Y.; Chang, C. J.; Yaghi, O. M. J. Am. Chem. Soc. 2018, 140, 1116.  doi: 10.1021/jacs.7b11940

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    3. [3]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    4. [4]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    15. [15]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(59)
  • Abstract views(2321)
  • HTML views(556)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return