Citation: Qin Xiaozhuan, Wang Xinchao, Feng Dandan, He Jiabei, Zheng Liping, Wang Yong, Xie Guanghui, Li Jingjing, Ding Ge. Study on Properties of Excited-state Intermolecular Proton Transfer (ESPT) Reaction Dendrite Containing Benzidine Fragments of Organic Chromophore[J]. Acta Chimica Sinica, ;2019, 77(8): 751-757. doi: 10.6023/A19040109 shu

Study on Properties of Excited-state Intermolecular Proton Transfer (ESPT) Reaction Dendrite Containing Benzidine Fragments of Organic Chromophore

  • Corresponding author: Qin Xiaozhuan, xiaozhuanqin@163.com Wang Xinchao, wxc198566@126.com Ding Ge, dingge1989cqu@126.com
  • Received Date: 1 April 2019
    Available Online: 12 August 2019

    Fund Project: Project supported by the Department of Science and Technology of Henan Province (No. 192102210201) and the Youth Innovation Fund of Zhengzhou Institute of Technology (No. QNCXJJ2018K3)the Department of Science and Technology of Henan Province 192102210201the Youth Innovation Fund of Zhengzhou Institute of Technology QNCXJJ2018K3

Figures(9)

  • In this paper, the intermediates 2'-hydroxybiphenyl-2-amine (I1) and 2'-methoxybiphenyl-2-amine (I2) were first synthetized via Suzuki reaction of 2-bromoaniline and arylboronic acid under 80℃. Meanwhile, organic dyes benzidine fragments ((E)-2'-(2-nitrobenzylideneamino)-biphenyl-3-ol (C1) and (E)-2'-(2, 4-dinitrobenzylideneamino)-biphenyl-3-ol (C3)) which could undergo intermolecular proton transfer in excited states were synthetized via aminoaldehyde condensation of the intermediates biphenyl-2-amine and corresponding aldehyde. In addition, the dyes without proton transfer segments ((E)-2'-methoxy-N-(2-nitrobenzylidene)biphenyl-3-amine (C2) and (E)-2'-methoxy-N-(2, 4-dinitrobenzylidene)biphenyl-3-amine (C4)) were also synthesized to act as references for comparisons experiment. The chemical structures of organic dyes were characterized by nuclear magnetic resonance (NMR) spectra, infrared spectra (IR), high resolution mass spectrometry (HR-MS) as well as elemental analysis. The analysis of X-ray single crystal diffraction and H NMR spectra suggest the presence of internal hydrogen bond with different strength in the target dyes C1 and C3. It indicated that the type of substituents has an effect on the chemical shift of hydroxyl groups, with the electron-withdrawing ability of substituents increases, the hydroxyl shift to higher field. Then the UV/visible spectra also confirm that the target dyes have intermolecular hydrogen bond, while there is no intermolecular hydrogen bond in the reference dyes C2 and C4. The excited-state intermolecular proton transfer (ESPT) properties of the organic dyes were further studied by fluorescence emission spectroscopy. It was found that target dye C3 could occur excited state intermolecular proton transfer (ESPT) via intermolecular hydrogen bonding in non-protonic solvents. In contrast, ESPT properties cannot be processed through hydrogen-bonding interaction of the studied target dye C1 no matter in protonic solvents, non-protonic solvents or in solid state. The target dye C1 and reference dyes (C2 and C4) only show the normal fluorescence emission peaks. It was worth mentioning that with the increasing concentration of C3 in solution, the ESPT reaction ability could be enhanced. Meanwhile, C3 can also occurs ESPT in solid state.
  • 加载中
    1. [1]

      Ayad, S.; Posey, V.; Das, A.; Montgomery, J. M.; Hanson, K. Chem. Commun. 2019, 55(9), 1263.  doi: 10.1039/C8CC07949H

    2. [2]

      Li, P.; Zeng, Y.; Chen, J. P.; Li, Y. Y.; Li, Y. Acta Chim. Sinica 2012, 70, 1611.
       

    3. [3]

      Zhang, P.; Zhang, Y. M.; Lin, Q.; Yao, H.; Wei, T. B. Chin. J. Org. Chem. 2014, 34, 1300.

    4. [4]

      Sedgwick, A. C.; Wu, L. L.; Han, H. H.; Bull, S. D.; He, X. P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J. Y. Chem. Soc. Rev. 2018, 47(23), 8842.  doi: 10.1039/C8CS00185E

    5. [5]

      Wang, M.; Cheng, C.; Song, J.; Wang, J.; Zhou, X.; Xiang, H.; Liu, J. Chinese J. Chem. 2018, 36, 698.  doi: 10.1002/cjoc.201800115

    6. [6]

      Pan, S. N.; Tang, H. Y.; Song, Z. K.; Li, J.; Guo, Y. Chinese J. Chem. 2017, 35, 1263.  doi: 10.1002/cjoc.201600923

    7. [7]

      Wu, K.; Zhang, T.; Wang, Z.; Wang, L.; Zhan, L.; Zhan, L. S.; Gong, S. L.; Zhong, C.; Lu, Z. H.; Zhang, S.; Yang, C. L. J. Am. Chem. Soc. 2018, 140, 8877.  doi: 10.1021/jacs.8b04795

    8. [8]

      Serdiuk, I. E.; Roshal, A. D. Dyes Pigments 2017, 138, 223.  doi: 10.1016/j.dyepig.2016.11.028

    9. [9]

      Simkovitch, R.; Kisin-Finfer, E.; Shomer, S.; Gepshtein, R.; Shabat, D.; Huppert, D. J. Photoch. Photobio. A 2013, 254, 45.  doi: 10.1016/j.jphotochem.2013.01.004

    10. [10]

      Fernandez-Ramos, A.; Martinez-Nunez, E.; Vazquez, S. A.; Rios, M. A.; Estevez, C. M.; Merchan, M.; Serrano-Andres, L. J. Phys. Chem. A 2007, 111(26), 5907.

    11. [11]

      Hsu, S. C.; Wang, T. P.; Kao, C. L.; Chen, H. F.; Yang, P. Y.; Chen, H. Y. J. Phys. Chem. B 2013, 117(7), 2096.  doi: 10.1021/jp400299v

    12. [12]

      Yokoyama, H.; Watanabe, H.; Omi, T.; Ishiuchi, S. I.; Fujii, M. J. Phys. Chem. A 2001, 105(41), 9366.  doi: 10.1021/jp011245g

    13. [13]

      Zhao, L.; Liu, J.; Zhou, P. J. Phys. Chem. A 2016, 120, 7419.  doi: 10.1021/acs.jpca.6b05719

    14. [14]

      Yokoyama, H.; Watanabe, H.; Omi, T.; Ishiuchi, S. I.; Fujii, M. J. Phys. Chem. A 2001, 105(41), 9366.  doi: 10.1021/jp011245g

    15. [15]

      Fang, H. Spectrochim. Acta A 2019, 214, 152.  doi: 10.1016/j.saa.2019.02.016

    16. [16]

      Wang, D. J.; Xu, Y. Q.; Sun, S. G.; Li, H. J. Chin. J. Appl. Chem. 2018, 35(1), 1.

    17. [17]

      Qin, X. Z.; Li, G.; Wang, Z. Q.; Ding, G..; Luo, Z. P.; Li, H. R.; Chen, L. Y.; Gao, F. Dyes Pigments 2017, 145, 538.  doi: 10.1016/j.dyepig.2017.06.055

    18. [18]

      Wang, Y.; Li, M.; Zhang, Y.; Yang, J.; Zhu, S.; Sheng, L.; Zhang, S. X. A. Chem. Commun. 2013, 49(59), 6587.  doi: 10.1039/C3CC42747A

    19. [19]

      Casanovas, J.; Namba, A. M.; León, S.; Aquino, G. L.; da Silva, G. V. J.; Alemán, C. J. Org. Chem. 2001, 66, 3775.  doi: 10.1021/jo0016982

    20. [20]

      Yi, P. G.; Yang, X. C.; Liu, J.; Hou, B.; Yu, X. Y.; Li, X. F.; Wang, Z. X.; Zheng, B. S. Chin. J. Org. Chem. 2013, 33, 1451.

    21. [21]

      Ingham, K.; El-Bayoumi, M. A. J. Am. Chem. Soc. 1974, 96(6), 1674.  doi: 10.1021/ja00813a006

    22. [22]

      Parada, G. A.; Markle, T. F.; Glover, S. D.; Hammarström, L.; Ott, S.; Zietz, B. Chem.-Eur. J. 2015, 21, 6362.  doi: 10.1002/chem.201500244

    23. [23]

      Qin, T. Y.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Li, Y. Acta Chim. Sinica 2017, 75, 1164.  doi: 10.3969/j.issn.0253-2409.2017.10.002
       

    24. [24]

      Doroshenko, A. O.; Posokhov, E. A.; Verezubova, A. A.; Ptyagina, L. M. J. Phys. Org. Chem. 2000, 13, 253.  doi: 10.1002/1099-1395(200005)13:5<253::AID-POC238>3.0.CO;2-D

    25. [25]

      Mehata, M. S.; Joshi, H. C.; Tripathi, H. B. Chem. Phys. Lett. 2002, 359(3-4), 314.  doi: 10.1016/S0009-2614(02)00716-9

    26. [26]

      Bulska, H.; Chodkowska, A. J. Am. Chem. Soc. 1980, 102(9), 3259.  doi: 10.1021/ja00529a069

  • 加载中
    1. [1]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    2. [2]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    3. [3]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    4. [4]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    5. [5]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    6. [6]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    7. [7]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    15. [15]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    18. [18]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    19. [19]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    20. [20]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

Metrics
  • PDF Downloads(7)
  • Abstract views(880)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return