Citation: Qin Xiaozhuan, Wang Xinchao, Feng Dandan, He Jiabei, Zheng Liping, Wang Yong, Xie Guanghui, Li Jingjing, Ding Ge. Study on Properties of Excited-state Intermolecular Proton Transfer (ESPT) Reaction Dendrite Containing Benzidine Fragments of Organic Chromophore[J]. Acta Chimica Sinica, ;2019, 77(8): 751-757. doi: 10.6023/A19040109 shu

Study on Properties of Excited-state Intermolecular Proton Transfer (ESPT) Reaction Dendrite Containing Benzidine Fragments of Organic Chromophore

  • Corresponding author: Qin Xiaozhuan, xiaozhuanqin@163.com Wang Xinchao, wxc198566@126.com Ding Ge, dingge1989cqu@126.com
  • Received Date: 1 April 2019
    Available Online: 12 August 2019

    Fund Project: Project supported by the Department of Science and Technology of Henan Province (No. 192102210201) and the Youth Innovation Fund of Zhengzhou Institute of Technology (No. QNCXJJ2018K3)the Department of Science and Technology of Henan Province 192102210201the Youth Innovation Fund of Zhengzhou Institute of Technology QNCXJJ2018K3

Figures(9)

  • In this paper, the intermediates 2'-hydroxybiphenyl-2-amine (I1) and 2'-methoxybiphenyl-2-amine (I2) were first synthetized via Suzuki reaction of 2-bromoaniline and arylboronic acid under 80℃. Meanwhile, organic dyes benzidine fragments ((E)-2'-(2-nitrobenzylideneamino)-biphenyl-3-ol (C1) and (E)-2'-(2, 4-dinitrobenzylideneamino)-biphenyl-3-ol (C3)) which could undergo intermolecular proton transfer in excited states were synthetized via aminoaldehyde condensation of the intermediates biphenyl-2-amine and corresponding aldehyde. In addition, the dyes without proton transfer segments ((E)-2'-methoxy-N-(2-nitrobenzylidene)biphenyl-3-amine (C2) and (E)-2'-methoxy-N-(2, 4-dinitrobenzylidene)biphenyl-3-amine (C4)) were also synthesized to act as references for comparisons experiment. The chemical structures of organic dyes were characterized by nuclear magnetic resonance (NMR) spectra, infrared spectra (IR), high resolution mass spectrometry (HR-MS) as well as elemental analysis. The analysis of X-ray single crystal diffraction and H NMR spectra suggest the presence of internal hydrogen bond with different strength in the target dyes C1 and C3. It indicated that the type of substituents has an effect on the chemical shift of hydroxyl groups, with the electron-withdrawing ability of substituents increases, the hydroxyl shift to higher field. Then the UV/visible spectra also confirm that the target dyes have intermolecular hydrogen bond, while there is no intermolecular hydrogen bond in the reference dyes C2 and C4. The excited-state intermolecular proton transfer (ESPT) properties of the organic dyes were further studied by fluorescence emission spectroscopy. It was found that target dye C3 could occur excited state intermolecular proton transfer (ESPT) via intermolecular hydrogen bonding in non-protonic solvents. In contrast, ESPT properties cannot be processed through hydrogen-bonding interaction of the studied target dye C1 no matter in protonic solvents, non-protonic solvents or in solid state. The target dye C1 and reference dyes (C2 and C4) only show the normal fluorescence emission peaks. It was worth mentioning that with the increasing concentration of C3 in solution, the ESPT reaction ability could be enhanced. Meanwhile, C3 can also occurs ESPT in solid state.
  • 加载中
    1. [1]

      Ayad, S.; Posey, V.; Das, A.; Montgomery, J. M.; Hanson, K. Chem. Commun. 2019, 55(9), 1263.  doi: 10.1039/C8CC07949H

    2. [2]

      Li, P.; Zeng, Y.; Chen, J. P.; Li, Y. Y.; Li, Y. Acta Chim. Sinica 2012, 70, 1611.
       

    3. [3]

      Zhang, P.; Zhang, Y. M.; Lin, Q.; Yao, H.; Wei, T. B. Chin. J. Org. Chem. 2014, 34, 1300.

    4. [4]

      Sedgwick, A. C.; Wu, L. L.; Han, H. H.; Bull, S. D.; He, X. P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J. Y. Chem. Soc. Rev. 2018, 47(23), 8842.  doi: 10.1039/C8CS00185E

    5. [5]

      Wang, M.; Cheng, C.; Song, J.; Wang, J.; Zhou, X.; Xiang, H.; Liu, J. Chinese J. Chem. 2018, 36, 698.  doi: 10.1002/cjoc.201800115

    6. [6]

      Pan, S. N.; Tang, H. Y.; Song, Z. K.; Li, J.; Guo, Y. Chinese J. Chem. 2017, 35, 1263.  doi: 10.1002/cjoc.201600923

    7. [7]

      Wu, K.; Zhang, T.; Wang, Z.; Wang, L.; Zhan, L.; Zhan, L. S.; Gong, S. L.; Zhong, C.; Lu, Z. H.; Zhang, S.; Yang, C. L. J. Am. Chem. Soc. 2018, 140, 8877.  doi: 10.1021/jacs.8b04795

    8. [8]

      Serdiuk, I. E.; Roshal, A. D. Dyes Pigments 2017, 138, 223.  doi: 10.1016/j.dyepig.2016.11.028

    9. [9]

      Simkovitch, R.; Kisin-Finfer, E.; Shomer, S.; Gepshtein, R.; Shabat, D.; Huppert, D. J. Photoch. Photobio. A 2013, 254, 45.  doi: 10.1016/j.jphotochem.2013.01.004

    10. [10]

      Fernandez-Ramos, A.; Martinez-Nunez, E.; Vazquez, S. A.; Rios, M. A.; Estevez, C. M.; Merchan, M.; Serrano-Andres, L. J. Phys. Chem. A 2007, 111(26), 5907.

    11. [11]

      Hsu, S. C.; Wang, T. P.; Kao, C. L.; Chen, H. F.; Yang, P. Y.; Chen, H. Y. J. Phys. Chem. B 2013, 117(7), 2096.  doi: 10.1021/jp400299v

    12. [12]

      Yokoyama, H.; Watanabe, H.; Omi, T.; Ishiuchi, S. I.; Fujii, M. J. Phys. Chem. A 2001, 105(41), 9366.  doi: 10.1021/jp011245g

    13. [13]

      Zhao, L.; Liu, J.; Zhou, P. J. Phys. Chem. A 2016, 120, 7419.  doi: 10.1021/acs.jpca.6b05719

    14. [14]

      Yokoyama, H.; Watanabe, H.; Omi, T.; Ishiuchi, S. I.; Fujii, M. J. Phys. Chem. A 2001, 105(41), 9366.  doi: 10.1021/jp011245g

    15. [15]

      Fang, H. Spectrochim. Acta A 2019, 214, 152.  doi: 10.1016/j.saa.2019.02.016

    16. [16]

      Wang, D. J.; Xu, Y. Q.; Sun, S. G.; Li, H. J. Chin. J. Appl. Chem. 2018, 35(1), 1.

    17. [17]

      Qin, X. Z.; Li, G.; Wang, Z. Q.; Ding, G..; Luo, Z. P.; Li, H. R.; Chen, L. Y.; Gao, F. Dyes Pigments 2017, 145, 538.  doi: 10.1016/j.dyepig.2017.06.055

    18. [18]

      Wang, Y.; Li, M.; Zhang, Y.; Yang, J.; Zhu, S.; Sheng, L.; Zhang, S. X. A. Chem. Commun. 2013, 49(59), 6587.  doi: 10.1039/C3CC42747A

    19. [19]

      Casanovas, J.; Namba, A. M.; León, S.; Aquino, G. L.; da Silva, G. V. J.; Alemán, C. J. Org. Chem. 2001, 66, 3775.  doi: 10.1021/jo0016982

    20. [20]

      Yi, P. G.; Yang, X. C.; Liu, J.; Hou, B.; Yu, X. Y.; Li, X. F.; Wang, Z. X.; Zheng, B. S. Chin. J. Org. Chem. 2013, 33, 1451.

    21. [21]

      Ingham, K.; El-Bayoumi, M. A. J. Am. Chem. Soc. 1974, 96(6), 1674.  doi: 10.1021/ja00813a006

    22. [22]

      Parada, G. A.; Markle, T. F.; Glover, S. D.; Hammarström, L.; Ott, S.; Zietz, B. Chem.-Eur. J. 2015, 21, 6362.  doi: 10.1002/chem.201500244

    23. [23]

      Qin, T. Y.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Li, Y. Acta Chim. Sinica 2017, 75, 1164.  doi: 10.3969/j.issn.0253-2409.2017.10.002
       

    24. [24]

      Doroshenko, A. O.; Posokhov, E. A.; Verezubova, A. A.; Ptyagina, L. M. J. Phys. Org. Chem. 2000, 13, 253.  doi: 10.1002/1099-1395(200005)13:5<253::AID-POC238>3.0.CO;2-D

    25. [25]

      Mehata, M. S.; Joshi, H. C.; Tripathi, H. B. Chem. Phys. Lett. 2002, 359(3-4), 314.  doi: 10.1016/S0009-2614(02)00716-9

    26. [26]

      Bulska, H.; Chodkowska, A. J. Am. Chem. Soc. 1980, 102(9), 3259.  doi: 10.1021/ja00529a069

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    18. [18]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(7)
  • Abstract views(772)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return