Citation: Yang Xinping, Wang Haichao, Tan Zhaofeng, Lu Keding, Zhang Yuanhang. Observations of OH Radical Reactivity in Field Studies[J]. Acta Chimica Sinica, ;2019, 77(7): 613-624. doi: 10.6023/A19030094 shu

Observations of OH Radical Reactivity in Field Studies

  • Corresponding author: Lu Keding, k.lu@pku.edu.cn Zhang Yuanhang, yhzhang@pku.edu.cn
  • Received Date: 21 March 2019
    Available Online: 3 July 2019

    Fund Project: the National Natural Science Foundation of China 91544225Project supported by the National Natural Science Foundation of China (No. 91544225) and Integrative study on the key chemical mechanisms of the Air Pollution Complex in China (No. 91844301)Integrative study on the key chemical mechanisms of the Air Pollution Complex in China 91844301

Figures(6)

  • Observations of OH Radical Reactivity in Field Studies Yang, Xinpinga, b Wang, Haichaoa, b Tan, Zhaofenga, b, c Lu, Keding*, a, b Zhang, Yuanhang*, a, b, d, e (a State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871) (b International Joint Research Center for Atmospheric Research, Peking University, Beijing 100871) (c Institute of Energy and Climate Research, IEK-8:Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany 52425) (d CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021) (e Beijing Innovation Center for Engineering Sciences and Advanced Technology, Peking University, Beijing 100871) Abstract The hydroxyl radical (OH) is the main source of atmospheric oxidation capacity, which oxidizes the primary pollutants into the secondary pollutants. Therefore, the measurements and characterization of source and sink of OH radical are critical to understand the formation mechanism of regional secondary pollution. However, the removal routes of OH radical still cannot be quantified accurately. OH radical reactivity can describe the OH total loss rate and the atmospheric oxidation, thus playing an important role in the OH budget analysis. The OH radical reactivity is defined as the total pseudo first-order rate coefficient for all atmospheric reactions of OH in an air parcel. It is challenging to accurately measure the OH radical reactivity due to the high activity and short life of OH radical. In this paper, we summarized all kinds of measurement techniques used in the field observations of OH radical reactivity, including Total OH Loss-rate Measurement (TOHLM), Laser flash Photolysis-Laser Induced Fluorescence (LP-LIF), Chemical Ionisation Mass Spectrometry (CIMS) and Comparative Reactivity Method (CRM). The techniques were reviewed on the aspects of measurement principles, instrument modules, and so on. Overall, LP-LIF is proposed to be the best technical approach. In addition, the measured OH radical reactivity and the major scientific findings of corresponding measurement campaigns conducted in typical tropospheric conditions as urban, forest and rural environments, etc. were outlined. The OH radical reactivity varies significantly in different conditions, ranging from less than 10 per second to hundreds. Comparison of measured OH radical reactivity and the calculated or modeling results reveals a significant missing reactivity, ranging from 20% to over 80% in some environments. Depending on the emission and pollution characteristics of the field observation sites, the sources of missing reactivity are generally attributed to the undetected or unknown organic species, i.e. primary organic species, secondary organic species or a combination of both. The accurate observation and the numerical modeling of the OH radical reactivity can provide a possibility for achieving numerical closure study of ROx radicals. Finally, we discussed the current research difficulties and possible new directions for future studies of the OH radical reactivity.
  • 加载中
    1. [1]

      Ehhalt, D. H. Phys. Chem. Chem. Phys. 1999, 1, 5401.  doi: 10.1039/a905097c

    2. [2]

      Lu, K.-D.; Zhang, Y.-H. Prog. Chem. 2010, 22, 500(in Chinese).
       

    3. [3]

      Hofzumahaus, A.; Aschmutat, U.; Hessling, M.; Holland, F.; Ehhalt, D. H. Geophys. Res. Lett. 1996, 23, 2541.  doi: 10.1029/96GL02205

    4. [4]

      Heard, D. E.; Pilling, M. J. Chem. Rev. 2003, 103, 5163.  doi: 10.1021/cr020522s

    5. [5]

      Hofzumahaus, A.; Rohrer, F.; Lu, K.; Bohn, B.; Brauers, T.; Chang, C.-C.; Fuchs, H.; Holland, F.; Kita, K.; Kondo, Y.; Li, X.; Lou, S.; Shao, M.; Zeng, L.; Wahner, A.; Zhang, Y. Science 2009, 324, 1702.  doi: 10.1126/science.1164566

    6. [6]

      Goldstein, A. H.; Galbally, I. E. Environ. Sci. Technol. 2007, 41, 1514.  doi: 10.1021/es072476p

    7. [7]

      Kovacs, T. A.; Brune, W. H. J. Atmos. Chem. 2001, 39, 105.  doi: 10.1023/A:1010614113786

    8. [8]

      Yang, Y.; Shao, M.; Wang, X.; Noelscher, A. C.; Kessel, S.; Guenther, A.; Williams, J. Atmos. Environ. 2016, 134, 147.  doi: 10.1016/j.atmosenv.2016.03.010

    9. [9]

      Mao, J.; Ren, X.; Brune, W. H.; Olson, J. R.; Crawford, J. H.; Fried, A.; Huey, L. G.; Cohen, R. C.; Heikes, B.; Singh, H. B.; Blake, D. R.; Sachse, G. W.; Diskin, G. S.; Hall, S. R.; Shetter, R. E. Atmos. Chem. Phys. 2009, 9, 163.  doi: 10.5194/acp-9-163-2009

    10. [10]

      Fuchs, H.; Novelli, A.; Rolletter, M.; Hofzumahaus, A.; Pfannerstill, E. Y.; Kessel, S.; Edtbauer, A.; Williams, J.; Michoud, V.; Dusanter, S.; Locoge, N.; Zannoni, N.; Gros, V.; Truong, F.; Sarda-Esteve, R.; Cryer, D. R.; Brumby, C. A.; Whalley, L. K.; Stone, D.; Seakins, P. W.; Heard, D. E.; Schoemaecker, C.; Blocquet, M.; Coudert, S.; Batut, S.; Fittschen, C.; Thames, A. B.; Brune, W. H.; Ernest, C.; Harder, H.; Muller, J. B. A.; Elste, T.; Kubistin, D.; Andres, S.; Bohn, B.; Hohaus, T.; Holland, F.; Li, X.; Rohrer, F.; Kiendler-Scharr, A.; Tillmann, R.; Wegener, R.; Yu, Z.; Zou, Q.; Wahner, A. Atmos. Meas. Tech. 2017, 10, 4023.  doi: 10.5194/amt-10-4023-2017

    11. [11]

      Sadanaga, Y.; Yoshino, A.; Watanabe, K.; Yoshioka, A.; Wakazono, Y.; Kanaya, Y.; Kajii, Y. Rev. Sci. Instrum. 2004, 75, 2648.  doi: 10.1063/1.1775311

    12. [12]

      Sinha, V.; Williams, J.; Crowley, J. N.; Lelieveld, J. Atmos. Chem. Phys. 2008, 8, 2213.  doi: 10.5194/acp-8-2213-2008

    13. [13]

      Muller, J. B. A.; Elste, T.; Plass-Duelmer, C.; Stange, G.; Holla, R.; Claude, A.; Englert, J.; Gilge, S.; Kubistin, D. Atmos. Meas. Tech. 2018, 11, 4413.  doi: 10.5194/amt-11-4413-2018

    14. [14]

      Ingham, T.; Goddard, A.; Whalley, L. K.; Furneaux, K. L.; Edwards, P. M.; Seal, C. P.; Self, D. E.; Johnson, G. P.; Read, K. A.; Lee, J. D.; Heard, D. E. Atmos. Meas. Tech. 2009, 2, 465.  doi: 10.5194/amt-2-465-2009

    15. [15]

      Hansen, R. F.; Griffith, S. M.; Dusanter, S.; Rickly, P. S.; Stevens, P. S.; Bertman, S. B.; Carroll, M. A.; Erickson, M. H.; Flynn, J. H.; Grossberg, N.; Jobson, B. T.; Lefer, B. L.; Wallace, H. W. Atmos. Chem. Phys. 2014, 14, 2923.  doi: 10.5194/acp-14-2923-2014

    16. [16]

      Lou, S.; Holland, F.; Rohrer, F.; Lu, K.; Bohn, B.; Brauers, T.; Chang, C. C.; Fuchs, H.; Haeseler, R.; Kita, K.; Kondo, Y.; Li, X.; Shao, M.; Zeng, L.; Wahner, A.; Zhang, Y.; Wang, W.; Hofzu-mahaus, A. Atmos. Chem. Phys. 2010, 10, 11243.  doi: 10.5194/acp-10-11243-2010

    17. [17]

      Holland, F.; Hessling, M.; Hofzumahaus, A. J. Atmos. Sci. 1995, 52, 3393.  doi: 10.1175/1520-0469(1995)052<3393:ISMOTO>2.0.CO;2

    18. [18]

      Lu, K. D.; Rohrer, F.; Holland, F.; Fuchs, H.; Bohn, B.; Brauers, T.; Chang, C. C.; Haeseler, R.; Hu, M.; Kita, K.; Kondo, Y.; Li, X.; Lou, S. R.; Nehr, S.; Shao, M.; Zeng, L. M.; Wahner, A.; Zhang, Y. H.; Hofzumahaus, A. Atmos. Chem. Phys. 2012, 12, 1541.  doi: 10.5194/acp-12-1541-2012

    19. [19]

      Tan, Z.; Rohrer, F.; Lu, K.; Ma, X.; Bohn, B.; Broch, S.; Dong, H.; Fuchs, H.; Gkatzelis, G. I.; Hofzumahaus, A.; Holland, F.; Li, X.; Liu, Y.; Liu, Y.; Novelli, A.; Shao, M.; Wang, H.; Wu, Y.; Zeng, L.; Hu, M.; Kiendler-Scharr, A.; Wahner, A.; Zhang, Y. Atmos. Chem. Phys. 2018, 18, 12391.  doi: 10.5194/acp-18-12391-2018

    20. [20]

      Berresheim, H.; Elste, T.; Plass-Dulmer, C.; Eisele, F. L.; Tanner, D. J. Int. J. Mass Spectrom. 2000, 202, 91.  doi: 10.1016/S1387-3806(00)00233-5

    21. [21]

      Kumar, V.; Sinha, V. Int. J. Mass Spectrom. 2014, 374, 55.  doi: 10.1016/j.ijms.2014.10.012

    22. [22]

      Noelscher, A. C.; Williams, J.; Sinha, V.; Custer, T.; Song, W.; Johnson, A. M.; Axinte, R.; Bozem, H.; Fischer, H.; Pouvesle, N.; Phillips, G.; Crowley, J. N.; Rantala, P.; Rinne, J.; Kulmala, M.; Gonzales, D.; Valverde-Canossa, J.; Vogel, A.; Hoffmann, T.; Ouwersloot, H. G.; De Arellano, J. V.-G.; Lelieveld, J. Atmos. Chem. Phys. 2012, 12, 8257.  doi: 10.5194/acp-12-8257-2012

    23. [23]

      Williams, J.; Brune, W. Atmos. Environ. 2015, 106, 371.  doi: 10.1016/j.atmosenv.2015.02.017

    24. [24]

      Zannoni, N.; Gros, V.; Lanza, M.; Sarda, R.; Bonsang, B.; Ka-logridis, C.; Preunkert, S.; Legrand, M.; Jambert, C.; Boissard, C.; Lathiere, J. Atmos. Chem. Phys. 2016, 16, 1619.  doi: 10.5194/acp-16-1619-2016

    25. [25]

      Hansen, R. F.; Blocquet, M.; Schoemaecker, C.; Leonardis, T.; Locoge, N.; Fittschen, C.; Hanoune, B.; Stevens, P. S.; Sinha, V.; Dusanter, S. Atmos. Meas. Tech. 2015, 8, 4243.  doi: 10.5194/amt-8-4243-2015

    26. [26]

      Edwards, P. M.; Evans, M. J.; Furneaux, K. L.; Hopkins, J.; Ingham, T.; Jones, C.; Lee, J. D.; Lewis, A. C.; Moller, S. J.; Stone, D.; Whalley, L. K.; Heard, D. E. Atmos. Chem. Phys. 2013, 13, 9497.  doi: 10.5194/acp-13-9497-2013

    27. [27]

      Di Carlo, P.; Brune, W. H.; Martinez, M.; Harder, H.; Lesher, R.; Ren, X. R.; Thornberry, T.; Carroll, M. A.; Young, V.; Shepson, P. B.; Riemer, D.; Apel, E.; Campbell, C. Science. 2004, 304, 722.  doi: 10.1126/science.1094392

    28. [28]

      Ren, X.; Brune, W. H.; Oliger, A.; Metcalf, A. R.; Simpas, J. B.; Shirley, T.; Schwab, J. J.; Bai, C.; Roychowdhury, U.; Li, Y.; Cai, C.; Demerjian, K. L.; He, Y.; Zhou, X.; Gao, H.; Hou, J. J. Geophys. Res.-Atmos. 2006, 111, D10S03.

    29. [29]

      Sinha, V.; Williams, J.; Lelieveld, J.; Ruuskanen, T. M.; Kajos, M. K.; Patokoski, J.; Hellen, H.; Hakola, H.; Mogensen, D.; Boy, M.; Rinne, J.; Kulmala, M. Environ. Sci. Technol. 2010, 44, 6614.  doi: 10.1021/es101780b

    30. [30]

      Nakashima, Y.; Kato, S.; Greenberg, J.; Harley, P.; Karl, T.; Turnipseed, A.; Apel, E.; Guenther, A.; Smith, J.; Kajii, Y. Atmos. Environ. 2014, 85, 1.  doi: 10.1016/j.atmosenv.2013.11.042

    31. [31]

      Kovacs, T. A.; Brune, W. H.; Harder, H.; Martinez, M.; Simpas, J. B.; Frost, G. J.; Williams, E.; Jobson, T.; Stroud, C.; Young, V.; Fried, A.; Wert, B. J. Environ. Monit. 2003, 5, 68.  doi: 10.1039/b204339d

    32. [32]

      Praplan, A. P.; Pfannerstill, E. Y.; Williams, J.; Hellen, H. Atmos. Environ. 2017, 169, 150.  doi: 10.1016/j.atmosenv.2017.09.013

    33. [33]

      Ren, X. R.; Harder, H.; Martinez, M.; Lesher, R. L.; Oliger, A.; Shirley, T.; Adams, J.; Simpas, J. B.; Brune, W. H. Atmos. Environ. 2003, 37, 3627.  doi: 10.1016/S1352-2310(03)00460-6

    34. [34]

      Shirley, T. R.; Brune, W. H.; Ren, X.; Mao, J.; Lesher, R.; Cardenas, B.; Volkamer, R.; Molina, L. T.; Molina, M. J.; Lamb, B.; Velasco, E.; Jobson, T.; Alexander, M. Atmos. Chem. Phys. 2006, 6, 2753.  doi: 10.5194/acp-6-2753-2006

    35. [35]

      Mao, J.; Ren, X.; Chen, S.; Brune, W. H.; Chen, Z.; Martinez, M.; Harder, H.; Lefer, B.; Rappenglueck, B.; Flynn, J.; Leuchner, M. Atmos. Environ. 2010, 44, 4107.  doi: 10.1016/j.atmosenv.2009.01.013

    36. [36]

      Chatani, S.; Shimo, N.; Matsunaga, S.; Kajii, Y.; Kato, S.; Nakashima, Y.; Miyazaki, K.; Ishii, K.; Ueno, H. Atmos. Chem. Phys. 2009, 9, 8975.  doi: 10.5194/acp-9-8975-2009

    37. [37]

      Kato, S.; Sato, T.; Kajii, Y. Atmos. Environ. 2011, 45, 5531.  doi: 10.1016/j.atmosenv.2011.05.074

    38. [38]

      Yoshino, A.; Nakashima, Y.; Miyazaki, K.; Kato, S.; Suthawaree, J.; Shimo, N.; Matsunaga, S.; Chatani, S.; Apel, E.; Greenberg, J.; Guenther, A.; Ueno, H.; Sasaki, H.; Hoshi, J.-Y.; Yokota, H.; Ishii, K.; Kajii, Y. Atmos. Environ. 2012, 49, 51.  doi: 10.1016/j.atmosenv.2011.12.029

    39. [39]

      Dolgorouky, C.; Gros, V.; Sarda-Esteve, R.; Sinha, V.; Williams, J.; Marchand, N.; Sauvage, S.; Poulain, L.; Sciare, J.; Bonsang, B. Atmos. Chem. Phys. 2012, 12, 9593.  doi: 10.5194/acp-12-9593-2012

    40. [40]

      Fuchs, H.; Tan, Z.; Lu, K.; Bohn, B.; Broch, S.; Brown, S. S.; Dong, H.; Gomm, S.; Haeseler, R.; He, L.; Hofzumahaus, A.; Holland, F.; Li, X.; Liu, Y.; Lu, S.; Min, K.-E.; Rohrer, F.; Shao, M.; Wang, B.; Wang, M.; Wu, Y.; Zeng, L.; Zhang, Y.; Wahner, A.; Zhang, Y. Atmos. Chem. Phys. 2017, 17, 645.  doi: 10.5194/acp-17-645-2017

    41. [41]

      Ren, X. R.; Brune, W. H.; Cantrell, C. A.; Edwards, G. D.; Shirley, T.; Metcalf, A. R.; Lesher, R. L. J. Atmos. Chem. 2005, 52, 231.  doi: 10.1007/s10874-005-3651-7

    42. [42]

      Sinha, V.; Williams, J.; Diesch, J. M.; Drewnick, F.; Martinez, M.; Harder, H.; Regelin, E.; Kubistin, D.; Bozem, H.; Hosaynali-Beygi, Z.; Fischer, H.; Andres-Hernandez, M. D.; Kartal, D.; Adame, J. A.; Lelieveld, J. Atmos. Chem. Phys. 2012, 12, 7269.  doi: 10.5194/acp-12-7269-2012

    43. [43]

      Elshorbany, Y. F.; Kleffmann, J.; Hofzumahaus, A.; Kurtenbach, R.; Wiesen, P.; Brauers, T.; Bohn, B.; Dorn, H. P.; Fuchs, H.; Holland, F.; Rohrer, F.; Tillmann, R.; Wegener, R.; Wahner, A.; Kanaya, Y.; Yoshino, A.; Nishida, S.; Kajii, Y.; Martinez, M.; Kubistin, D.; Harder, H.; Lelieveld, J.; Elste, T.; Plass-Duelmer, C.; Stange, G.; Berresheim, H.; Schurath, U. J. Geophys. Res.-Atmos. 2012, 117, D03307.

    44. [44]

      Leuchner, M.; Rappenglueck, B. Atmos. Environ. 2010, 44, 4056.  doi: 10.1016/j.atmosenv.2009.02.029

    45. [45]

      Haque, M. M.; Kawamura, K.; Kim, Y. Atmos. Environ.2016, 130, 95.  doi: 10.1016/j.atmosenv.2015.09.075

    46. [46]

      Guenther, A.; Hewitt, C. N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; Mckay, W. A.; Pierce, T.; Scholes, B.; Steinbrecher, R.; Tallamraju, R.; Taylor, J.; Zimmerman, P. J. Geophys. Res.-Atmos. 1995, 100, 8873.  doi: 10.1029/94JD02950

    47. [47]

      Fehsenfeld, F.; Calvert, J.; Fall, R.; Goldan, P.; Guenther, A.; Hewitt, C.; Lamb, B.; Liu, S.; Trainer, M.; Westberg, H.; Zimmerman, P. Global Biogeochem. Cycles. 1992, 6, 389.  doi: 10.1029/92GB02125

    48. [48]

      Atkinson, R.; Arey, J. Atmos. Environ.2003, 37, S197.  doi: 10.1016/S1352-2310(03)00391-1

    49. [49]

      Holzinger, R.; Lee, A.; Paw, K. T.; Goldstein, A. H. Atmos. Chem. Phys. 2005, 5, 67.  doi: 10.5194/acpd-4-5345-2004

    50. [50]

      Mogensen, D.; Smolander, S.; Sogachev, A.; Zhou, L.; Sinha, V.; Guenther, A.; Williams, J.; Nieminen, T.; Kajos, M. K.; Rinne, J.; Kulmala, M.; Boy, M. Atmos. Chem. Phys. 2011, 11, 9709.  doi: 10.5194/acp-11-9709-2011

    51. [51]

      Laothawornkitkul, J.; Taylor, J. E.; Paul, N. D.; Hewitt, C. N. New Phytol. 2009, 184, 276.  doi: 10.1111/nph.2009.184.issue-1

    52. [52]

      Yang. D.-J.; Bai, Y.-H.; Li, J.-L.; Pan, N.-M.; Yu, K.-H.; Tang, L.; Peng, L.-X.; Su, H. China Environ. Sci. 2001, 21, 422(in Chinese).  doi: 10.3321/j.issn:1000-6923.2001.05.009

    53. [53]

      Peng, L.-X.; Tang, X.-Y.; Bai, Y.-H.; Li, J.-L. China Environ. Sci. 2000, 20, 132(in Chinese).  doi: 10.3321/j.issn:1000-6923.2000.02.009

    54. [54]

      Xu, T.-Y. Master Dissertation, Gansu Agricultural University, 2018(in Chinese). 

    55. [55]

      http://mcm.leeds.ac.uk/MCM/

    56. [56]

      Lee, J. D.; Young, J. C.; Read, K. A.; Hamilton, J. F.; Hopkins, J. R.; Lewis, A. C.; Bandy, B. J.; Davey, J.; Edwards, P.; Ingham, T.; Self, D. E.; Smith, S. C.; Pilling, M. J.; Heard, D. E. J. Atmos. Chem. 2009, 64, 53.  doi: 10.1007/s10874-010-9171-0

    57. [57]

      Bai, J.-H; Guenther, A.; Turnipseed, A. J. Environ. Sci.-China 2012, 32, 2236(in Chinese).
       

    58. [58]

      Fuchs, H.; Tan, Z.; Lu, K.; Bohn, B.; Broch, S.; Brown, S. S.; Dong, H.; Gomm, S.; Haeseler, R.; He, L.; Hofzumahaus, A.; Holland, F.; Li, X.; Liu, Y.; Lu, S.; Min, K.-E.; Rohrer, F.; Shao, M.; Wang, B.; Wang, M.; Wu, Y.; Zeng, L.; Zhang, Y.; Wahner, A.; Zhang, Y. Atmos. Chem. Phys. 2017, 17, 645.  doi: 10.5194/acp-17-645-2017

    59. [59]

      Lu, K. D.; Hofzumahaus, A.; Holland, F.; Bohn, B.; Brauers, T.; Fuchs, H.; Hu, M.; Haeseler, R.; Kita, K.; Kondo, Y.; Li, X.; Lou, S. R.; Oebel, A.; Shao, M.; Zeng, L. M.; Wahner, A.; Zhu, T.; Zhang, Y. H.; Rohrer, F. Atmos. Chem. Phys. 2013, 13, 1057.  doi: 10.5194/acp-13-1057-2013

    60. [60]

      Karl, T.; Guenther, A.; Turnipseed, A.; Tyndall, G.; Artaxo, P.; Martin, S. Atmos. Chem. Phys. 2009, 9, 7753.  doi: 10.5194/acp-9-7753-2009

    61. [61]

      Kim, S.; Guenther, A.; Karl, T.; Greenberg, J. Atmos. Chem. Phys. 2011, 11, 8613.  doi: 10.5194/acp-11-8613-2011

    62. [62]

      Martinez, M.; Harder, H.; Kovacs, T. A.; Simpas, J. B.; Bassis, J.; Lesher, R.; Brune, W. H.; Frost, G. J.; Williams, E. J.; Stroud, C. A.; Jobson, B. T.; Roberts, J. M.; Hall, S. R.; Shetter, R. E.; Wert, B.; Fried, A.; Alicke, B.; Stutz, J.; Young, V. L.; White, A. B.; Zamora, R. J. J. Geophys. Res.-Atmos. 2003, 108, 4617.  doi: 10.1029/2003JD003551

    63. [63]

      Wu, W.-R.; Yuan, X.-M.; Hou, H.; Wang, B.-S. Acta Chim. Sinica 2018, 76, 793(in Chinese).  doi: 10.7503/cjcu20170561
       

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    3. [3]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    9. [9]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    12. [12]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    16. [16]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    17. [17]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    18. [18]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

Metrics
  • PDF Downloads(42)
  • Abstract views(2004)
  • HTML views(593)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return