Citation: Liu Wen-Qiang, Yang Xiu-Long, Tung Chen-Ho, Wu Li-Zhu. Activation of S-H and N-H Bonds to Synthesize Sulfinamides via Cross Coupling Hydrogen Evolution[J]. Acta Chimica Sinica, ;2019, 77(9): 861-865. doi: 10.6023/A19030077 shu

Activation of S-H and N-H Bonds to Synthesize Sulfinamides via Cross Coupling Hydrogen Evolution

  • Corresponding author: Wu Li-Zhu, lzwu@mail.ipc.ac.cn
  • Received Date: 6 March 2019
    Available Online: 22 September 2019

    Fund Project: the Strategic Priority Research Program of the Chinese Academy of Science XDB17000000the National Natural Science Foundation of China 91427303Key Research Program of Frontier Sciences of the Chinese Academy of Science QUZDY-SSW-JSC029the National Natural Science Foundation of China 21861132004the Ministry of Science and Technology of China 2017YFA0206903Project supported by the Ministry of Science and Technology of China (2017YFA0206903), the National Natural Science Foundation of China (91427303 and 21861132004), the Strategic Priority Research Program of the Chinese Academy of Science (XDB17000000), Key Research Program of Frontier Sciences of the Chinese Academy of Science (QUZDY-SSW-JSC029), and K. C. Wong Education Foundation

Figures(6)

  • Catalytic synthesis of organic sulfinamides has great significance and value in organic synthesis, material science, and bioscience. Traditional synthetic methods for sulfinamides are often confronted with various challenges, such as tedious reaction steps, harsh reaction conditions. Direct activation of S-H and N-H bonds to synthesis sulfinamides is the most effective and atomic economic way, which can realize the N-S bonds construction without pre-functionalization of the substrates. To establish a versatile and efficient technology for such reaction, an electrochemical cross coupling hydrogen evolution (CCHE) reaction, which is often used as an environmentally friendly and efficient way to construct new bonds, for synthesis of sulfinamides has been successfully developed by using thiols and amines as the easily available and inexpensive substrates. A series of sulfinamides were prepared with excellent yields and good compatibility of functional groups under extremely mild reaction conditions. Experimental results showed that sulfenamides, which were constructed as intermediate products via radical pathway, were further oxidized to sulfinamides. H218O labeling experiment confirmed that the oxygen of sulfinyl group comes from the trace water in 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol (HFIP). In addition, tetrabutylammonium iodide (TBAI) played important dual roles of intermediate and electrolyte in this reaction system. The typical procedure is as follows:A 20 mL oven-dried reaction vital equipped with a magnetic stir bar was charged with thiol 1 (0.2 mmol), amine 2 (0.3 mmol) and TBAI (0.05 mol/L) in HFIP (5 mL), and exhausted via puncture needle for 15 minutes with argon. The mixture was then electrolysed with carbon foam plate (anode) and platinum plate (cathode) as the electrodes in an undivided cell for 6 hours in 10 mA constant current at room temperature. After the reaction, the mixture was evaporated under reduced pressure to remove the solvent and the residue was purified by chromatography on silica gel to get the desired sulfinamide 3.
  • 加载中
    1. [1]

      (a) Sola, J.; Reves, M.; Riera, A.; Verdaguer, X. Angew. Chem. Int. Ed. 2007, 46, 5020. (b) Beck, E. M.; Hyde, A. M.; Jacobsen, E. N. Org. Lett. 2011, 13, 4260. (c) Viso, A.; de la Pradilla, R. F.; Urena, M.; Bates, R. H.; del Aguila, M. A.; Colomer, I. J. Org. Chem. 2012, 77, 525. (d) Zhang, Z. M.; Chen, P.; Li, W. B.; Niu, Y. F.; Zhao, X. L.; Zhang, J. L. Angew. Chem. Int. Ed. 2014, 53, 4350. (e) Fjelbye, K.; Svenstrup, N.; Puschl, A. Synthesis-Stuttgart 2015, 47, 3231. (f) Su, X.; Zhou, W.; Li, Y. Y.; Zhang, J. L. Angew. Chem. Int. Ed. 2015, 54, 6874. (g) Zhou, W.; Su, X.; Tao, M. N.; Zhu, C. Z.; Zhao, Q. J.; Zhang, J. L. Angew. Chem. Int. Ed. 2015, 54, 14853. (h) Chelouan, A.; Recio, R.; Borrego, L. G.; Alvarez, E.; Khiar, N.; Fernandez, I. Org. Lett. 2016, 18, 3258.

    2. [2]

      (a) Moree, W. J.; Vandermarel, G. A.; Liskamp, R. M. J. Tetrahedron Lett. 1991, 32, 409. (b) Viswanadhan, V. N.; Ghose, A. K.; Hanna, N. B.; Matsumoto, S. S.; Avery, T. L.; Revankar, G. R.; Robins, R. K. J. Med. Chem. 1991, 34, 526. (c) Carreno, M. C. Chem. Rev. 1995, 95, 1717. (d) Khiar, N.; Werner, S.; Mallouk, S.; Lieder, F.; Alcudia, A.; Fernández, I. J. Org. Chem. 2009, 74, 6002. (e) Chelouan, A.; Recio, R.; Borrego, L. G.; Alvarez, E.; Khiar, N.; Fernandez, I. Org. Lett. 2016, 18, 3258.

    3. [3]

      (a) Andreassen, T.; Lorentzen, M.; Hansen, L.-K.; Gautun, O. R. Tetrahedron 2009, 65, 2806. (b) Chen, D.; Xu, M.-H. J. Org. Chem. 2014, 79, 7746.

    4. [4]

      Uchino, M.; Sekiya, M. Chem. Pharm. Bull. 1980, 28, 126.  doi: 10.1248/cpb.28.126

    5. [5]

      (a) Billard, T.; Greiner, A.; Langlois, B. R. Tetrahedron 1999, 55, 7243. (b) Davis, F. A.; Zhang, Y.; Andemichael, Y.; Fang, T.; Fanelli, D. L.; Zhang, H. J. Org. Chem. 1999, 64, 1403. (c) Zhou, P.; Chen, B.-C.; Davis, F. A. Tetrahedron 2004, 60, 8003.

    6. [6]

      Cogan, D. A.; Liu, G.; Kim, K.; Backes, B. J.; Ellman, J. A. J. Am. Chem. Soc. 1998, 120, 8011.  doi: 10.1021/ja9809206

    7. [7]

      Wang, Q.; Tang, X.-Y.; Shi, M. Angew. Chem. Int. Ed. 2016, 55, 10811.  doi: 10.1002/anie.201605066

    8. [8]

      Yu, H.; Li, Z.; Bolm, C. Angew. Chem. Int. Ed. 2018, 57, 15602.  doi: 10.1002/anie.201810548

    9. [9]

      Dai, Q.; Zhang, J. Adv. Synth. Catal. 2018, 360, 1123.  doi: 10.1002/adsc.201701510

    10. [10]

      Taniguchi, N. Eur. J. Org. Chem. 2016, 2016, 2157.  doi: 10.1002/ejoc.201600091

    11. [11]

      Zhong, J.; Meng, Q.; Chen, B.; Tung, C.; Wu, L. Acta Chim. Sinica 2017, 75, 34(in Chinese).  doi: 10.3969/j.issn.0253-2409.2017.01.006
       

    12. [12]

    13. [13]

      (a) Wang, Y.; Qian, P.; Su, J.-H.; Li, Y.; Bi, M.; Zha, Z.; Wang, Z. Green Chem. 2017, 19, 4769. (b) Huang, P.; Wang, P.; Tang, S.; Fu, Z.; Lei, A. Angew. Chem. Int. Ed. 2018, 57, 8115; (c) Liu, K.; Song, C.; Lei, A. Org. Biomol. Chem. 2018, 16, 2375.

    14. [14]

      Gao, X.; Yuan, G.; Chen, H.; Jiang, H.; Li, Y.; Qi, C. Electrochem. Commun. 2013, 34, 242.  doi: 10.1016/j.elecom.2013.06.022

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(9)
  • Abstract views(1366)
  • HTML views(256)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return