Citation: Lin Fengguirong, Liang Yujie, Li Xinyao, Song Song, Jiao Ning. Copper-catalyzed ortho C-H Azidation of Anilines Using Molecular Oxygen as Terminal Oxidant[J]. Acta Chimica Sinica, ;2019, 77(9): 906-910. doi: 10.6023/A19020070 shu

Copper-catalyzed ortho C-H Azidation of Anilines Using Molecular Oxygen as Terminal Oxidant

  • Corresponding author: Jiao Ning, jiaoning@pku.edu.cn
  • Received Date: 27 February 2019
    Available Online: 22 September 2019

    Fund Project: the National Natural Science Foundation of China 21632001the National Natural Science Foundation of China 21772002Project supported by the National Natural Science Foundation of China (Nos. 21632001, 21772002)

Figures(3)

  • Organic azides are widely used in chemical synthesis, drug discovery, bioconjugation, and material science, owing to their flexible transformations to useful chemicals such as amines, amides, isocyanates and heterocycles. In light of the diverse value of azide-containing compounds, numerous synthetic methods have been established to access this significant functionality. Among them, direct C-H azidation reactions have attracted particular attention due to their cost-and atom-efficiency. Previous methods for the preparation of azido-substituted anilines require the employment of stoichiometric amount of harsh oxidants such as hyperoxides and hypervalent iodine reagents. To synthesize these valuable compounds in an economical and environmentally benign manner, a simple and efficient copper-catalyzed ortho C-H azidation of anilines using molecular oxygen as terminal oxidant has been developed. The reaction proceeded smoothly with the assistance of pyridine at room temperature, and afforded the synthetically useful azido-substituted anilines in moderate to good yields. Notably, the process of dehydrogenation coupling of anilines to azo compounds was significantly suppressed in this protocol. This method allows for the highly regioselective formation of C-N3 bonds under mild reaction conditions, and exhibits good functional group and substrate scope compatibility. A general procedure for the azidation of anilines is as follows:a mixture of aniline (0.4 mmol) and CuBr (5.7 mg, 0.04 mmol) is loaded in a 20 mL Schlenk tube, which is equipped with a magnetic stir bar and subjected to evacuation/flushing with oxygen three times. Subsequently, DCM (4.0 mL), pyridine (6.3 mg, 0.08 mmol) and TMSN3 (92.2 mg, 0.8 mmol) are added to the Schlenk tube via syringe, and the formed mixture is stirred at room temperature until the amount of target product no longer increases, which is monitored by TLC. After completion of the reaction, the solution is concentrated under vacuum and further purified by column chromatography on silica gel to give the desired product (eluent:petroleum ether/ethyl acetate).
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      Grieb, P. Philos. Trans. R. Soc. Lond. 1864, 13, 377.

    5. [5]

      (a) He, Z.; Bae, M.; Wu, J.; Jamison, T. F. Angew. Chem., Int. Ed. 2014, 53, 14451; (b) Xie, F.; Qi, Z.; Li, X. Angew. Chem. Int. Ed. 2013, 52, 11862; (c) Dou, Y.; Xie, Z.; Sun, Z.; Fang, H.; Shen, C.; Zhang, P.; Zhu, Q. ChemCatChem 2016, 8, 3570; (d) Hussain, M. K.; Ansari, M. I.; Kant, R.; Hajela, K. Org. Lett. 2014, 16, 560; (e) Azad, C. S.; Narula, A. K. RSC Adv. 2015, 5, 100223; (f) Yan, Y.-M.; Gao, Y.; Ding, M.-W. Tetrahedron 2016, 72, 5548; (g) Yamamoto, K.; Kamino, S.; Sawada, D. Tetrahedron Lett. 2017, 58, 3936; (h) Dhineshkumar, J.; Gadde, K.; Prabhu, K. R. J. Org. Chem. 2018, 83, 228; (i) Dou, Y.; Yin, B.; Zhang, P.; Zhu, Q. Eur. J. Org. Chem. 2018, 2018, 4571.

    6. [6]

      Tang, C.; Jiao, N. J. Am. Chem. Soc. 2012, 134, 18924.  doi: 10.1021/ja3089907

    7. [7]

      Fan, Y.; Wan, W.; Ma, G.; Gao, W.; Jiang, H.; Zhu, S.; Hao, J. Chem. Commun. 2014, 50, 5733.  doi: 10.1039/C4CC01481B

    8. [8]

      Fang, H.; Dou, Y.; Ge, J.; Chhabra, M.; Sun, H.; Zhang, P.; Zheng, Y.; Zhu, Q. J. Org. Chem. 2017, 82, 11212.  doi: 10.1021/acs.joc.7b01594

    9. [9]

      (a) Liang, Y.-F.; Wu, K.; Liu, Z.; Wang, X.; Liang, Y.; Liu, C.; Jiao, N. Sci. China Chem. 2015, 58, 1334; (b) Huang, X.; Li, X.; Zou, M.; Song, S.; Tang, C.; Yuan, Y.; Jiao, N. J. Am. Chem. Soc. 2014, 136, 14858; (c) Liang, Y.; Jiao, N. Angew. Chem. Int. Ed. 2016, 55, 4035; (d) Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem. Int. Ed. 2009, 48, 4572; (e) Song, S.; Zhang, Y.; Yeerlan, A.; Zhu, B.; Liu, J.; Jiao, N. Angew. Chem. Int. Ed. 2017, 56, 2487; (f) Zhang, C.; Xu, Z.; Zhang, L.; Jiao, N. Angew. Chem. Int. Ed. 2011, 50, 11088; (g) Li, X.; Jiao, N. Chin. J. Chem. 2017, 35, 1349.

    10. [10]

    11. [11]

      (a) Zhang, C.; Jiao, N. Angew. Chem. Int. Ed. 2010, 49, 6174; (b) Lu, W.; Xi, C. Tetrahedron Lett. 2008, 49, 4011; (c) Wang, J.; He, J.; Zhi, C.; Luo, B.; Li, X.; Pan, Y.; Cao, X.; Gu, H. RSC Adv. 2014, 4, 16607.

    12. [12]

    13. [13]

      Lin, W.; Zhang, X.; He, Z.; Jin, Y.; Gong, L.; Mi, A. Synth. Commun. 2002, 32, 3279.  doi: 10.1081/SCC-120014032

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    10. [10]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    16. [16]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    19. [19]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(11)
  • Abstract views(1217)
  • HTML views(314)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return