Citation: Yue Yong, Qian Zhiqi, Kong Fanan, Xiao Qin, Ren Shijie. Preparation and Adsorption Application Study of Fluorine-containing Conjugated Microporous Polymers[J]. Acta Chimica Sinica, ;2019, 77(6): 500-505. doi: 10.6023/A19020066 shu

Preparation and Adsorption Application Study of Fluorine-containing Conjugated Microporous Polymers

  • Corresponding author: Ren Shijie, rensj@scu.edu.cn
  • Received Date: 22 February 2019
    Available Online: 17 June 2019

    Fund Project: the National Natural Science Foundation of China 21404074the State Key Laboratory of Polymer Materials Engineering Sklpme2018-2-05the National Natural Science Foundation of China 21574087Project supported by the National Natural Science Foundation of China (Nos. 21574087, 21404074) and the State Key Laboratory of Polymer Materials Engineering (No. Sklpme2018-2-05)

Figures(4)

  • Water pollution arising from ever-growing domestic sewage and industrial organic pollutants has caused severe environmental and ecological problems in many parts of the world. It is urgent to seek appropriate ways to resolve oily wastewater and organic solvent pollution. Currently, physical adsorption is considered to be one of the most important methods to eliminate the oil contaminations in water thanks to its high efficiency and low cost. However, traditional adsorbent materials, such as activated carbon, zeolite and natural fibers, often suffer from low adsorption capacities, poor adsorption selectivity and recyclability. Thus, it is still of great importance to develop new absorbent materials for the separation and removal of oils or organic pollutants from water to address environmental issues. Conjugated microporous polymers (CMPs) are a class of organic porous polymers that have attracted extensive attention thanks to their large specific surface area, good physicochemical stability and unique extended π-conjugation along the polymer skeleton. Here we report a fluorine-containing conjugated microporous polymer (F-CMP), which was synthesized via Sonogashira cross-coupling reaction from 1, 3, 5-trifluoro-2, 4, 6-triiodobenzene and 1, 3, 5-triethynylbenzene. As a comparison, fluorine-free conjugated microporous polymer (H-CMP) was synthesized in the same condition from 1, 3, 5-tribromobenzene and 1, 3, 5-triethynybenzene. By introducing fluorine atom into the conjugated microporous skeleton, the contact angle of F-CMP with water reaches 145°, exhibiting excellent hydrophobicity. Nitrogen adsorption/desorption isotherms of the F-CMP show a high specific surface area of 638 m2·g-1, and the pore size distribution analysis shows the existence of both micropores and macropores. It can be obtained by adsorption experiments of oil and organic solvents that the adsorption capability of F-CMP increases significantly compared with its fluorine-free counterpart with similar structural skeleton. Due to high hydrophobicity and porous properties, F-CMP shows excellent adsorption properties towards to the removal of organic solvents and oils. The adsorption capability of F-CMP towards pump oil and chloroform can reach 40 g/g and 43 g/g, respectively. Meanwhile, F-CMP shows rapid adsorption rate and excellent adsorption recyclability. Thus, F-CMP displays promising application prospects in the field of organic pollutant adsorption and environmental remediation.
  • 加载中
    1. [1]

      Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301.  doi: 10.1038/nature06599

    2. [2]

      Doshi, B.; Sillanpaa, M.; Kalliola, S. Water Res. 2018, 135, 262.  doi: 10.1016/j.watres.2018.02.034

    3. [3]

      Gupta, S.; Tai, N. H. J. Mater. Chem. A 2016, 4, 1550.  doi: 10.1039/C5TA08321D

    4. [4]

      Lei, E.; Li, W.; Ma, C.; Liu, S. Mater. Chem. Phys. 2018, 214, 291.  doi: 10.1016/j.matchemphys.2018.04.075

    5. [5]

      Mohan, D.; Singh, K. P.; Singh, V. K. J. Hazard Mater. 2008, 152, 1045.  doi: 10.1016/j.jhazmat.2007.07.079

    6. [6]

      Sakthivel, T.; Reid, D. L.; Goldstein, I.; Hench, L.; Seal, S. Environ. Sci. Technol. 2013, 47, 5843.  doi: 10.1021/es3048174

    7. [7]

      Likon, M.; Remskar, M.; Ducman, V.; Svegl, F. J. Environ. Manage. 2013, 114, 158.

    8. [8]

      Zhang, T.; Kong, L.; Dai, Y.; Yue, X.; Rong, J.; Qiu, F.; Pan, J. Chem. Eng. J. 2017, 309, 7.  doi: 10.1016/j.cej.2016.08.085

    9. [9]

      Chin, S. F.; Binti, R. A. N.; Pang, S. C. Mater. Lett. 2014, 115, 241.  doi: 10.1016/j.matlet.2013.10.061

    10. [10]

      Ong, C. C.; Sundera, M. S.; Mohamed, N. M.; Perumal, V.; Mohamed, S. M. S. ACS Omega. 2018, 3, 15907.  doi: 10.1021/acsomega.8b01566

    11. [11]

      Ji, C.; Zhang, K.; Li, L.; Chen, X.; Hu, J.; Yan, D.; Xiao, G.; He, X. J. Mater. Chem. A 2017, 5, 11263.  doi: 10.1039/C7TA02613G

    12. [12]

      Peng, D.; Jiang, W.; Li, F. F.; Zhang, L.; Liang, R. P.; Qiu, J. D. ACS Sustainable Chem. Eng. 2018, 6, 11685.  doi: 10.1021/acssuschemeng.8b01951

    13. [13]

      Dawson, R.; Laybourn, A.; Clowes, R.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Macromolecules 2009, 42, 8809.  doi: 10.1021/ma901801s

    14. [14]

      Dawson, R.; Cooper, A. I.; Adams, D. J. Prog. Polym. Sci. 2012, 37, 530.  doi: 10.1016/j.progpolymsci.2011.09.002

    15. [15]

      Yan, T. T.; Xing, G. L.; Ben, T. Acta Chim. Sinica 2018, 76, 366.
       

    16. [16]

      Pang, C.; Luo, S. H.; Hao, Z. F.; Gao, J.; Huang, Z. H.; Yu, J. H.; Yu, S. M.; Wang, Z. Y. Chin. J. Org. Chem. 2018, 38, 2606.

    17. [17]

      Yu, S.; Xu, Y. J.; Jiang, J. X.; Ren, S. J. Acta Chim. Sinica 2015, 73, 629.
       

    18. [18]

      Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Chem. Soc. Rev. 2013, 42, 8012.  doi: 10.1039/c3cs60160a

    19. [19]

      Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem. Int. Ed. 2007, 46, 8574.  doi: 10.1002/anie.v46:45

    20. [20]

      Chen, Q.; Liu, D. P.; Luo, M.; Feng, L. J.; Zhao, Y. C.; Han, B. H. Small 2014, 10, 308.  doi: 10.1002/smll.v10.2

    21. [21]

      Wang, X.; Chen, B.; Dong, W.; Zhang, X.; Li, Z.; Xiang, Y.; Chen, H. Macromol. Rapid Commun. 2018, e1800494.

    22. [22]

      Kong, S. N.; Malik, A. U.; Qian, X. F.; Shu, M. H.; Xiao, W. D. Chin. J. Org. Chem. 2018, 38, 656.

    23. [23]

      Kong, S. N.; Qian, X. F.; Shu, M. H.; Xiao, W. D. Chin. J. Org. Chem. 2018, 38, 2754.

    24. [24]

      Xu, Y. J.; Wu, S. P.; Ren, S. J.; Ji, J.; Yue, Y.; Shen, J. J. RSC Adv. 2017, 7, 32496.  doi: 10.1039/C7RA05551J

    25. [25]

      He, Q.; Zhang, C.; Li, X.; Wang, X.; Mu, P.; Jiang, J. X. Acta Chim. Sinica 2018, 76, 202.
       

    26. [26]

      Liao, Y.; Cheng, Z.; Zuo, W.; Thomas, A.; Faul, C. F. J. ACS Appl. Mater. Interfaces 2017, 9, 38390.  doi: 10.1021/acsami.7b09553

    27. [27]

      Bildirir, H.; Osken, I.; Ozturk, T.; Thomas, A. Chemistry 2015, 21, 9306.  doi: 10.1002/chem.v21.26

    28. [28]

      Qiu, F.; Zhao, W.; Han, S.; Zhuang, X.; Lin, H.; Zhang, F. Polymers 2016, 8, 191.  doi: 10.3390/polym8050191

    29. [29]

      Yang, R. X.; Wang, T. T.; Deng, W. Q. Sci. Rep. 2015, 5, 10155.  doi: 10.1038/srep10155

    30. [30]

      Lee, J. S. M.; Wu, T. H.; Alston, B. M.; Briggs, M. E.; Hasell, T.; Hu, C. C.; Cooper, A. I. J. Mater. Chem. A 2016, 4, 7665.  doi: 10.1039/C6TA02319C

    31. [31]

      Qin, L.; Xu, G. j.; Yao, C.; Xu, Y. Polym. Chem. 2016, 7, 4599.  doi: 10.1039/C6PY00666C

    32. [32]

      Cha, M. C.; Lim, Y.; Choi, T. J.; Chang, J. Y. Macromol. Chem. Phys. 2017, 218, 1700219.  doi: 10.1002/macp.v218.20

    33. [33]

      Shen, X.; He, J.; Wang, K.; Li, X.; Wang, X.; Yang, Z.; Wang, N.; Zhang, Y.; Huang, C. ChemSusChem 2019, 12, 1342.  doi: 10.1002/cssc.v12.7

    34. [34]

      Zhao, X.; Wu, M.; Liu, Y.; Cao, S. Org. Lett. 2018, 20, 5564.  doi: 10.1021/acs.orglett.8b02228

    35. [35]

      Ju, Z.; Zhang, S.; Xing, Z.; Zhuang, Q.; Qiang, Y.; Qian, Y. ACS Appl. Mater. Interfaces 2016, 8, 20682.  doi: 10.1021/acsami.6b04763

    36. [36]

      Wang, X.; Mu, P.; Zhang, C.; Chen, Y.; Zeng, J.; Wang, F.; Jiang, J. X. ACS Appl. Mater. Interfaces 2017, 9, 20779.  doi: 10.1021/acsami.7b05345

    37. [37]

      Xu, L.; Xiao, G.; Chen, C.; Li, R.; Mai, Y.; Sun, G.; Yan, D. J. Mater. Chem. A 2015, 3, 7498.  doi: 10.1039/C5TA00383K

    38. [38]

      Wenk, H. H.; Sander, W. Eur. J. Org. Chem. 2002, 3927.

  • 加载中
    1. [1]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    10. [10]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    11. [11]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    12. [12]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    13. [13]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    14. [14]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    15. [15]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    20. [20]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

Metrics
  • PDF Downloads(15)
  • Abstract views(1149)
  • HTML views(203)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return