Citation: Chen Tian, Yang Ying, Zhao Wanyu, Pan Dequn, Zhu Congtan, Lin Feiyu, Guo Xueyi. Solvothermal Preparation and Characterization of Nano-nickel Oxide[J]. Acta Chimica Sinica, ;2019, 77(5): 447-454. doi: 10.6023/A19010033 shu

Solvothermal Preparation and Characterization of Nano-nickel Oxide

  • Corresponding author: Yang Ying, muyicaoyang@126.com Guo Xueyi, xyguo@csu.edu.cn
  • Received Date: 19 January 2019
    Available Online: 22 May 2019

    Fund Project: Undergraduate student of Central South University ZY20180866Scientific Research Foundation for the Returned overseas Chinese Scholar, Natural Science Foundation of Hunan Province 2016JJ3140the National Natural Science Foundation of China 61774169Undergraduate student of Central South University 202321009Project supported by the National Natural Science Foundation of China (No. 61774169), Scientific Research Foundation for the Returned overseas Chinese Scholar, Natural Science Foundation of Hunan Province (2016JJ3140) and Undergraduate student of Central South University (ZY20180866, 202321009)

Figures(9)

  • Nano-scale nickel oxide materials were prepared by solvothermal method using nickel acetylacetonate, oleic acid and oleylamine as raw materials, octadecene as solvent and polyvinylpyrrolidone as surfactant. The effects of the ratio of reactants ratio, insulation time, surfactant and the mass of oleylamine on the microstructure, particle size, morphology, optics and catalytic properties of the product were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), ultraviolet-visible spectroscopy (UV-Vis) spectral analysis, and Tafel test. The specific experimental operations were:the oleic acid (OA) and 1-octadecene (ODE) was added into four flasks (500 mL) with heating and stirring. Nickel acetylacetonate was added when the temperature raise to 50℃, then continuously stirring for 60 minutes at 120℃ before a certain amount of oleylamine (OAm) was added to the reaction system. The mixed solution was poured into the inner liner of the high temperature reactor. The reactor was covered and transferred to the electro-thermostatic blast oven for a period of time and then cooled to room temperature. The main research results were obtained:(1) The boundary of the original particles became smoothed after sintering, and the spherical particles become flake-shaped which might be attributed to the residual organic covering so the size of nickel oxide nanoparticles changed from the original 40~45 nm to 30~40 nm. (2) With the addition of PVP, the content of NiO phase increased and the particle size was controlled within 40~45 nm. The UV-Vis test showed that NiO belonged to direct band gap and the band gap width was 3.5~3.7 eV. (3) The Tafel analysis showed that the best catalytic activity with exchange current density J0 was 1.23×10-2 mA·cm-2, where pure NiO could be obtained when the reactant ratio of n[Ni(acac)2]:n(OA)=1:2, the additive PVP mass fraction was of 1.66%, the amount of oleylamine was of 30 mmol, and the temperature was of 200℃ for 8 h.
  • 加载中
    1. [1]

      Lin, X.-Y.; Wang, J. Acta Chim. Sinica 2017, 75, 979(in Chinese).
       

    2. [2]

      Gu, T.-H.; Shi, J.-M.; Hua, Y.-L.; Liu, J.; Wang, W.; Zhang, W.-X. Acta Chim. Sinica 2017, 75, 991(in Chinese).
       

    3. [3]

      Guo, X.-R.; Yin, Y.-G.; Tan, Z.-Q.; Liu, J.-F.; Jiang, G.-B. Acta Chim. Sinica 2018, 76, 387(in Chinese).  doi: 10.11862/CJIC.2018.036
       

    4. [4]

      Zhang, W.; Deng, W. Chin. J. Org. Chem. 2018, 38, 3002(in Chinese).

    5. [5]

      Wang, L.; Zhao, D.-D.; Liu, X.; Yu, P.; Fu, H.-G. Acta Chim. Sinica 2017, 75, 231(in Chinese).  doi: 10.7503/cjcu20160577
       

    6. [6]

      Martin, C. R. Science 1994, 266, 1961.  doi: 10.1126/science.266.5193.1961

    7. [7]

      Zhao, J.; Chen, Z. J. Comput. Theor. Nanosci. 2011, 8, 2395.  doi: 10.1166/jctn.2011.1970

    8. [8]

      Liu, L.; Li, Y.; Yuan, S.; Ge, M.; Ren, M.; Sun, C.; Zhou, Z. J. Phys. Chem. C 2010, 114, 1.  doi: 10.1021/jp911609d

    9. [9]

      Huang, X.; Tan, C.-L.; Yin, Z.-Y.; Zhang, H. Adv. Mater. 2014, 26, 14.
       

    10. [10]

      Sawatzky, G. A.; Allen, J. W. Phys. Rev. Lett. 1984, 53, 24.  doi: 10.1103/PhysRevLett.53.24

    11. [11]

      Thota, S.; Shim, J. H.; Seehra, M. S. J. Appl. Phys. 2013, 114, 21.
       

    12. [12]

      Das, N.-S.; Santra, S.; Banerjee, D.; Das, G.-C.; Chattopadhyay, K. K. Mater. Res. Express. 2014, 1, 2.
       

    13. [13]

      Echresh, A.; Chan, O.-C.; Shoushtari, M.-Z.; Khranovskyy, V.; Nur, O.; Willander, M. J. Alloys Compd. 2015, 632, 25.
       

    14. [14]

      Hashemzadeh, F.; Gaffarinejad, A.; Rahimi, R. J. Hazard. Mater. 2015, 286, 9.
       

    15. [15]

      Wang, G.; Yang, D.-M.; Liu, J. Mater. Rev. 2017, 31, 5(in Chinese).

    16. [16]

      Jang, Y.; Chen, D.-D.; Song, J.-S.; Jiao, Z.; Ma, Q.-L.; Zhang, H.-J.; Cheng, L.-L.; Zhao, B.; Chu, Y.-L. Electrochim. Acta 2013, 91, 3.

    17. [17]

      Yan, X.-Y.; Tong, X.-L.; Wang, J.; Gong, C.-W.; Zhang, M.-G.; Liang, L.-P. Mater. Lett. 2013, 95, 3.

    18. [18]

      Wang, H.; Zeng, X.-W.; Huang, Z.-F.; Zhang, W.-J.; Qiao, X.-F.; Hu, B.; Zou, X.-P.; Wang, M.-K.; Cheng, Y.-B.; Chen, W. ACS Appl. Mater. Interfaces 2014, 6, 15.

    19. [19]

      Song, C.; Dong, X.-T.; Wang, J.-X.; Liu, G.-X. Acta Chim. Sinica 2011, 69, 20(in Chinese).
       

    20. [20]

      Jia, W.; Xu, M.-W.; Lei, C.; Bao, S.-J.; Jia, D.-Z. Acta Chim. Sinica 2011, 69, 15(in Chinese).
       

    21. [21]

      Zhang, H.-J.; Zhang, X.-G.; Yuan, C.-Z.; Gao, B.; Sun, K.; Fu, Q.-B.; Lu, X.-J.; Jiang, J.-C. Acta Phys.-Chim. Sin. 2011, 27, 2(in Chinese).

    22. [22]

      Jiang, L.; Huang, H.; Wang, C.-T.; Zhang, W.-K.; Gan, Y.-P.; Tao, X.-Y. Acta Phys.-Chim. Sin. 2016, 26, 02(in Chinese).

    23. [23]

      Ma, X.-J.; Wang, N.-N.; Qian, Y.-T.; Bai, Z.-C. Mater. Lett. 2016, 168, 5.  doi: 10.1016/j.matlet.2016.01.019

    24. [24]

      Miao, R.-Y.; Zeng, W. Mater. Lett. 2016, 171, 200.  doi: 10.1016/j.matlet.2016.02.052

    25. [25]

      Turgut, G.; Duman, S. J. Alloys Compd. 2016, 664, 547.  doi: 10.1016/j.jallcom.2016.01.026

    26. [26]

      Zhao, J.-F.; Tan, Y.; Su, K.; Zhao, J.-J.; Yang, C.; Sang, L.-L.; Lu, H.-B.; Chen, J.-H. Appl. Surf. Sci. 2015, 337, 111.  doi: 10.1016/j.apsusc.2015.02.071

    27. [27]

      Patil, R.-A.; Devan, R.-S.; Lin, J.-H.; Ma, Y.-R.; Patil, P.-S.; Liou, Y. Sol. Energy Mater. Sol. Cells 2013, 112, 91.  doi: 10.1016/j.solmat.2013.01.003

    28. [28]

      Jiang, H.; Jian, J.-W.; Chen, K.; Gu, Y.-Y. J. Chin. Ceram. Soc. 2012, 40, 12.
       

    29. [29]

      Ma, X.-J.; Wang, N.-N.; Qian, Y.-T.; Bai, Z.-C. Mater. Lett. 2016, 168, 5.  doi: 10.1016/j.matlet.2016.01.019

    30. [30]

      Cai, G.-F.; Wang, X.; Cui, M.-Q.; Darmawan, P.; Wang, J.-X.; Eh, A. L.-S.; Lee, P.-S. Nano Energy 2015, 12, 258.  doi: 10.1016/j.nanoen.2014.12.031

    31. [31]

      Yang, P.-P.; Yuan, X.-L.; Hu, H.-C.; Liu, Y.-L.; Zheng, H.-W.; Yang, D.; Chen, L.; Cao, M.-H.; Yong, X.; Min, Y.-L.; Li, Y.-G.; Zhang, Q. Adv. Funct. Mater. 2018, 28, 1.

    32. [32]

      Zhang, Q.; Zheng, Z.; Liu, C.-X.; Liu, C.-Q.; Tan, T.-W. Colloids Surf., B 2016, 140, 446.  doi: 10.1016/j.colsurfb.2016.01.013

    33. [33]

      Liu, J.; Sun, Z.-K.; Deng, Y.-H.; Zou, Y.; Li, C.-Y.; Guo, X.-H.; Xiong, L.-Q.; Gao, Y.; Li, F.-U.; Zhao, D.-Y. Angew. Chem., Int. Ed. 2009, 48, 32.

    34. [34]

      Mali, S.-S.; Kim, H.; Kim, H.-H.; Shim, S.-E.; Hong, C.-K. Mater. Today 2018, 21, 483.  doi: 10.1016/j.mattod.2017.12.002

    35. [35]

      Liu, Z.-H.; Z, A.-L.; C, F.-S.; Tao, L.-M.; Zhou, Y.-H.; Zhao, Z.-X.; Chen, Q.; Cheng, Y.-B.; Zhou, H.-P. J. Mater. Chem. A 2017, 5, 6597.  doi: 10.1039/C7TA01593C

    36. [36]

      (a) Jeng, J.-Y.; Chen, K.-C.; Chiang, T.-Y.; Lin, P.-Y.; Tsai, T.-D.; Chang, Y.-C.; Guo, T.-F.; Chen, P.; Wen, T.-C.; Hsu, Y.-J. Adv. Mater. 2014, 26, 4107.
      (b) Tian, H.-N.; Xu, B.; Chen, H.; Johansson, E. M. J.; Boschloo, G. ChemSusChem 2014, 7, 8.

    37. [37]

      Irwin, M.-D.; Buchholz, B.; Hains, A.-W.; Chang, R. P. H.; Marks, T.-J. Proc. Natl. Acad. Sci. 2008, 105, 8.  doi: 10.1073/pnas.0800158105

    38. [38]

      Zhu, Z.-L.; Bai, Y.; Zhang, T.; Liu, Z.-K.; Long, X.; Wei, Z.-H.; Wang, Z.-L.; Zhang, L.-X.; Wang, J.-N.; Yan, F.; Yang, S.-H. Angew. Chem. 2014, 26, 46.

    39. [39]

      Guo, X.-Y.; Wang, W.-J.; Yang, Y.; Tian, Q.-H. CrystEngComm 2016, 10, 1039.

    40. [40]

      Su, D.; Ford, M.; Wang, G.-X. Sci. Rep. 2012, 2, 924.  doi: 10.1038/srep00924

    41. [41]

      Ahn, Y.; Jang, J.; Son, J.-Y. J. Electroceram. 2017, 38, 1.  doi: 10.1007/s10832-016-0051-0

    42. [42]

      Fan, J.-L.; Wang, S.-Z.; Sun, W.; Guo, S.-G.; Kang, Y.; Du, J.-J.; Peng, X.-J. CrystEngComm 2016, 64, 3.

    43. [43]

      Saha, S.; Chhetri, S.; Khanra, P.; Samanta, P.; Koo, H.; Murmu, N.-C.; Kuila, T. J. Energ. Storage 2016, 6, 22.  doi: 10.1016/j.est.2016.02.007

    44. [44]

      Abu-Zied, B.-M.; Asiri, A.-M. Thermochim. Acta 2017, 649, 54.  doi: 10.1016/j.tca.2017.01.003

    45. [45]

      Gao, J.; Yang, Y.; Zhang, Z.; Yan, J.-Y.; Lin, Z.-H.; Guo, X.-Y. Nano Energy 2016, 26, 123.  doi: 10.1016/j.nanoen.2016.05.010

    46. [46]

      Li, Y.-J.; Quan, F.-X.; Chen, L.; Zhang, W.-J.; Yu, H.-B.; Chen, C.-F. RSC Adv. 2013, 4, 1895.
       

    47. [47]

      Liu, Z.-H.; Zhang, M.; Xu, X.-B.; Bu, L.-L.; Zhang, W.-J.; Li, W.-H.; Zhao, Z.-X.; Wang, M.-K.; Cheng, Y.-B.; He, H.-S. Dalton Trans. 2015, 44, 3967.  doi: 10.1039/C4DT02904F

    48. [48]

      Gao, W.; Xia, Z.-M.; Cao, F.-X.; Ho, J.-C.; Jiang, Z.; Qu, Y.-Q. Adv. Funct. Mater. 2018, 28, 1706056.  doi: 10.1002/adfm.v28.11

  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    3. [3]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    4. [4]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    5. [5]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    8. [8]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(52)
  • Abstract views(3000)
  • HTML views(977)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return