Citation: Li Yanan, Ji Huoyan, Wang Tianyi, Shen Lei, Shi Xiuying, Wang Jianxin. Established and Optimized the Measurement of Serum Troponin Ⅰ Using Liquid Chromatography Tandem Mass Spectrometry[J]. Acta Chimica Sinica, ;2019, 77(6): 539-544. doi: 10.6023/A19010032 shu

Established and Optimized the Measurement of Serum Troponin Ⅰ Using Liquid Chromatography Tandem Mass Spectrometry

  • Corresponding author: Wang Jianxin, wwbft@126.com
  • Received Date: 18 January 2019
    Available Online: 8 June 2019

    Fund Project: Project supported by the National Key Research and Development Program of China (No. 2017YFF0205401)the National Key Research and Development Program of China 2017YFF0205401

Figures(7)

  • Cardiac troponin Ⅰ (cTnI) is one of the most popular biomarkers for the diagnosis of acute myocardial injury (AMI) in patients. In this study, a novel method was developed and optimized for quantification of cTnI in human serum by immunoaffinity enrichment combining isotope dilution liquid chromatography tandem mass spectrometry. cTnI was first captured from human serum with immunomagnetic beads conjugated with the monoclonal antibody, and then enzymatically hydrolyzed into peptides after a series of operation, including denaturation, reduction, acetylation, digestion and purification. Subsequently, enzymatic peptides were separated by passing through Symmetry Shield C18 column at a speed of 0.2 mL/min with 0.1% acid acetonitrile solution and 0.1% acid aqueous solution as mobile phases under gradient elution. A specific peptide, NITEIADLTQK, was selected and quantified. The qualitative analysis was achieved by three ion transitions under multiple reaction monitoring (MRM) when the isotopically labeled peptide, NITEIAD[(13C6, 15N)L]TQK, was used as a reference. After the optimal conditional experiment, results showed that the surrogate peptide was separated out well at about 4.95 min with little interference. Ranging from 10 ng/mL to 600 ng/mL, a good linearity was shown with correlation coefficients all above 0.99. The limit of detection (LOD) and the limit of quantification (LOQ) were estimated to be 2.5 ng/mL, 8.32 ng/mL, respectively. This method also provided good accuracy (relative bias of three concentrations diluted from SRM2921 were between -7.94% and -6.49%) and repeatability (total relative standard deviations of three concentration were 6.43%, 3.18% and 2.75%, respectively). Carry-over rates were estimated between -0.47% and 0.04%. The novel assay successfully determined five specimens from AMI patients with concentrations from 16.38 ng/mL to 557.53 ng/mL. Our results demonstrate that this method can be applied for determination of serum cTnI in AMI patients with high selectivity, low carry-over rates, good repeatability and good accuracy, which helps to establish candidate reference measurement procedure of serum cTnI.
  • 加载中
    1. [1]

      Stillman, A. E.; Oudkerk, M.; Bluemke, D.; Bremerich, J.; Esteves, F. P.; Garcia, E. V.; Gutberlet, M.; Hundley, W. G.; Jerosch-Herold, M.; Kuijpers, D.; Kwong, R. K.; Nagel, E.; Lerakis, S.; Oshinski, J.; Paul, J. F.; Underwood, R.; Witersperger, B. J.; Rees, M. R. Int. J. Cardiovasc. Imaging 2011, 27, 7.  doi: 10.1007/s10554-010-9714-0

    2. [2]

      Soetkamp, D.; Raedschelders, K.; Mastali, M.; Sobhani, K.; Bairey Merz, C. N.; Van Eyk, J. Expert Rev. Proteomics 2017, 14, 973.  doi: 10.1080/14789450.2017.1387054

    3. [3]

      Boriani, G.; Biffi, M.; Cervi, V.; Bronzetti, G.; Magagnoli, G.; Zannoli, R.; Branzi, A. Chest. 2000, 118, 342.  doi: 10.1378/chest.118.2.342

    4. [4]

      Panteghini, M.; Bunk, D. M.; Christenson, R. H.; Katrukha, A.; Porter, R. A.; Schimmel, H.; Wang, L.; Tate, J. R. Clin. Chem. Lab. Med. 2008, 46, 1501.

    5. [5]

      Tate, J. R.; Bunk, D. M.; Christenson, R. H.; Katrukha, A.; Noble, J. E.; Porter, R. A.; Schimmel, H.; Wang, L.; Panteghini, M. Pathology 2010, 42, 402.  doi: 10.3109/00313025.2010.495246

    6. [6]

      Hoofnagle, A. N.; Wener, M. H. J. Immunol. Methods 2009, 347, 3.  doi: 10.1016/j.jim.2009.06.003

    7. [7]

      Noble, J. E.; Bunk, D. M.; Christenson, R. H.; Cole, K. D.; He, H. J.; Katrukha, A. G.; Panteghini, M.; Porter, R. A.; Schimmel, H.; Tate, J. R.; Wang, L. Clin. Chem. Lab. Med. 2010, 48, 1603.

    8. [8]

      Guo, Q.-Z.; Du, Z.-X. Chin. J. Chem. 2019, 29, 1922.

    9. [9]

      Chen, L.-N.; Song, F.-R.; Zheng, Z.; Xing, J.-P.; Liu, Z.-Q.; Liu, S.-Y. Acta Chim. Sinica 2012, 70, 843(in Chinese).
       

    10. [10]

      Agger, S. A.; Marney, L. C.; Hoofnagle, A. N. Clin. Chem. 2010, 56, 1804.  doi: 10.1373/clinchem.2010.152264

    11. [11]

      Kuhn, E.; Wu, J.; Karl, J.; Liao, H.; Zolg, W.; Guild, B. Proteomics 2004, 4, 1175.  doi: 10.1002/(ISSN)1615-9861

    12. [12]

      Keshishian, H.; Addona, T.; Burgess, M.; Mani, D. R.; Shi, X.; Kuhn, E.; Sabatine, M. S.; Gerszten, R. E.; Carr, S. A. Mol. Cell. Proteomics 2009, 8, 2339.  doi: 10.1074/mcp.M900140-MCP200

    13. [13]

      Kuhn, E.; Addona, T.; Keshishian, H.; Burgess, M.; Mani, D. R.; Lee, R. T.; Sabatine, M. S.; Gerszten, R. E.; Carr, S. A. Clin. Chem. 2009, 55, 1108.  doi: 10.1373/clinchem.2009.123935

    14. [14]

      Li, X.-Q.; Yang, Z.; Zhang, Q.-H. J. Chin. Mass Spectrom. Soc. 2013, 34, 338(in Chinese).  doi: 10.7538/zpxb.2013.34.06.0338

    15. [15]

      Anderson, N. L. Clin. Chem. 2010, 56, 177.  doi: 10.1373/clinchem.2009.126706

    16. [16]

      Anderson, N. L.; Anderson, N. G. Mol. Cell. Proteomics 2002, 1, 845.  doi: 10.1074/mcp.R200007-MCP200

    17. [17]

      Williams, D. K.; Muddiman, D. C. J. Proteome Res. 2009, 8, 1085.  doi: 10.1021/pr800922p

    18. [18]

      Ji, H.; Wang, J.; Ju, S.; Cong, H.; Wang, X.; Su, J.; Wang, H. J. Chromatogr. B:Anal. Technol. Biomed. Life Sci. 2017, 1059, 49.  doi: 10.1016/j.jchromb.2017.04.007

    19. [19]

      Mann, M.; Hendrickson, R. C.; Pandey, A. Annu. Rev. Biochem. 2001, 70, 437.  doi: 10.1146/annurev.biochem.70.1.437

    20. [20]

      Zhao, M.; Wu, F. Protein Expression Purif. 2015, 116, 120.

    21. [21]

      Rice, R. H.; Means, G. E. Biochim. Biophys. Acta 1977, 492, 316.  doi: 10.1016/0005-2795(77)90082-4

    22. [22]

      Nash, D. C.; Chase, H. A. J. Chromatogr. A 1998, 807, 185.  doi: 10.1016/S0021-9673(98)00076-4

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    6. [6]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    7. [7]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    8. [8]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    9. [9]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    10. [10]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    11. [11]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    12. [12]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    13. [13]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    14. [14]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    15. [15]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    19. [19]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(9)
  • Abstract views(1097)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return