Citation: Li Zhangnan, Sha Haoyan, Yang Nan, Yuan Ye, Zhu Guangshan. Phosphoric Acid Based Porous Aromatic Framework for Uranium Extraction[J]. Acta Chimica Sinica, ;2019, 77(5): 469-474. doi: 10.6023/A19010028 shu

Phosphoric Acid Based Porous Aromatic Framework for Uranium Extraction

  • Corresponding author: Yuan Ye, Yuany101@nenu.edu.cn
  • Received Date: 16 January 2019
    Available Online: 14 May 2019

    Fund Project: the National Basic Research Program of China 2014CB931804Project supported by the National Basic Research Program of China (973 Program, No. 2014CB931804) and the National Natural Science Foundation of China (NSFC Project, Nos. 91622106, 21531003, 21601031)the National Natural Science Foundation of China 21601031the National Natural Science Foundation of China 91622106the National Basic Research Program of China 973 Programthe National Natural Science Foundation of China 21531003

Figures(11)

  • As a clean, safe, efficient, and economical energy, nuclear energy plays an irreplaceable role in the resource sector. However, uranium deposits on land will run out in the coming decades. The uranium content in seawater is huge but its concentration is as low as~3 ppb. So it is an urgent problem to design and synthesize adsorbent materials with high extraction efficiency. In this paper, taking the actual industrialization as the direction, we adopted biphenyl as the building block and synthesize the porous aromatic framework material (PAF-45) in a low price. Then porous aromatic framework material (PAF-45-PG) with phosphoric acid groups was prepared through a post-modification procedure. The structure and pore characteristics of the compound were investigated by FTIR, TGA, PXRD, SEM, TEM and N2 adsorption experiments. FTIR spectrum indicates that the emerging vibrational peaks at 900~1250 cm-1 can be ascribed to the successful decoration of phosphate groups in PAF-45-PG compared with pure PAF-45. Powder X-ray diffraction shows that PAF-45 and PAF-45-PG are amorphous. And transmission electron microscope (TEM) images also agree with the conclusion of PXRD that PAF materials possess disordered structure. Moreover, there is no significant weight loss before 400℃ demonstrated by thermogravimetric analysis, which indicates the high thermal stability of two PAF resultants. The porosity of PAF networks was characterized by measuring the N2 adsorption isotherm at 77 K. Calculated by Brunauer-Emmett-Teller (BET) adsorption model, the specific surface area of PAF-45-PG is 426 m2·g-1, which is lower than that of pure PAF-45 (828 m2·g-1). This reduction of surface area is attributed to the introduction of functional groups which increase the weight per constitutional unit and occupy the space in the porous structure. After that, we tested the UO22+ ion adsorption of PAFs in simulated seawater. The equilibrium adsorption capacity of PAF-45-PG increases with the increase of uranium concentration, and reaches the maximum value (101 mg·g-1) at about 8 ppm. Because the maximum capacity of PAF-45 is 5.9 mg·g-1, this result indicates that the adsorption of uranium ion in PAF-45-PG is mainly caused by the post-modified phosphate functional group on its pore surface. Due to the low cost and simple preparation process, the material (PAF-45-PG) has a great industrial prospect.
  • 加载中
    1. [1]

      Kim, J.; Tsouris, C.; Mayes, R. T.; Oyola, Y.; Saito, T.; Janke, C. J.; Dai, S.; Schneider, E.; Sachde, D. Sep. Sci. Technol. 2013, 48, 367.  doi: 10.1080/01496395.2012.712599

    2. [2]

      Yue, Y.; Mayes, R. T.; Gill, G.; Kuo, L.; Wood, J.; Binder, A.; Brown, S.; Dai, S. RSC Adv. 2015, 5, 50005.  doi: 10.1039/C5RA02131F

    3. [3]

      Kim, J.; Tsouris, C.; Oyola, Y.; Janke, C. J.; Mayes, R. T.; Dai, S.; Gill, G.; Kuo, L.; Wood, J.; Choe, K.; Schneider, E.; Lindner, H. Ind. Eng. Chem. Res. 2014, 53, 6076.  doi: 10.1021/ie4039828

    4. [4]

      Saito, T.; Brown, S.; Chatterjee, S.; Kim, J.; Tsouris, C.; Mayes, R.T.; Kuo, L.; Gill, G.; Oyola, Y.; Janke, C. J.; Dai, S. J. Mater. Chem. A 2014, 2, 14674.  doi: 10.1039/C4TA03276D

    5. [5]

      Kim, J.; Oyola, Y.; Tsouris, C.; Cole, C. R.; Mayes, R. T.; Janke, J. C.; Dai, S. Ind. Eng. Chem. Res. 2013, 52, 9433.  doi: 10.1021/ie400587f

    6. [6]

      Sholl, D. S.; Lively, R. P. Nature 2016, 532, 435.  doi: 10.1038/532435a

    7. [7]

      Lu, Y. Nat. Chem. 2014, 6, 175.  doi: 10.1038/nchem.1880

    8. [8]

      Yue, Y.; Mayes, R.; Kim, J.; Sun, X.; Chen, J.; Dai, S. Angew. Chem., Int. Ed. 2013, 52, 13458.  doi: 10.1002/anie.201307825

    9. [9]

      Liu, C.; Xie, J.; Zhao, J.; Wu, T.; Wang, H.; Liu, W.; Zhang, J.; Cui, Y. Nat. Energy. 2017, 2, 17007.  doi: 10.1038/nenergy.2017.7

    10. [10]

      Feng, M.; Sarma, D.; Qi, X.; Du, K.; Huang, X. J. Am. Chem. Soc. 2016, 138, 12578.  doi: 10.1021/jacs.6b07351

    11. [11]

      Sun, Q.; Aguila, B. Adv. Mater. 2018, 1705479.
       

    12. [12]

      Barber, P. S.; Kelley, S. P.; Griggs, C. S.; Wallace, S.; Rogers, R. D. Green Chem. 2014, 16, 1828.  doi: 10.1039/C4GC00092G

    13. [13]

      Yue, Y.; Sun, X.; Mayes, R. T.; Kim, J.; Fulvio, P. F.; Qiao, Z.; Brown, S.; Tsouris, C.; Oyola, Y.; Dai, S. Sci. China: Chem. 2013, 56, 1510.
       

    14. [14]

      Kobuke, Y.; Tabushi, I.; Aoki, T.; Kamaishi, T.; Hagiwara, I. Ind. Eng. Chem. Res. 1988, 27, 1461.  doi: 10.1021/ie00080a018

    15. [15]

      Carboni, M.; Abney, C. W.; Liu, S.; Lin, W. Chem. Sci. 2013, 4, 2396.  doi: 10.1039/c3sc50230a

    16. [16]

      Manos, M. J.; Kanatzidis, M. G. J. Am. Chem. Soc. 2012, 134, 16441.  doi: 10.1021/ja308028n

    17. [17]

      Kobayashi, S.; Tokunoh, M.; Saegusa, T.; Mashio, F. Macromolecules 1985, 18, 2357.  doi: 10.1021/ma00154a004

    18. [18]

      Chen, H. J.; Huang, S. Y.; Zhang, Z. B.; Liu, Y. H.; Wang, X. K. Acta Chim. Sinica 2017, 75, 560(in Chinese).  doi: 10.11862/CJIC.2017.075
       

    19. [19]

      Chatterjee, S.; Bryantsev, V. S.; Brown, S.; Johnson, J. C.; Grant, C. D.; Mayes, R. T.; Hay, B. P. Ind. Eng. Chem. Res. 2016, 55, 4161.  doi: 10.1021/acs.iecr.5b03212

    20. [20]

      Yue, Y.; Zhang, C.; Tang, Q.; Mayes, R. T.; Liao, W.; Liao, C.; Dai, S. Ind. Eng. Chem. Res. 2016, 55, 4125.  doi: 10.1021/acs.iecr.5b03372

    21. [21]

      Shao, D.; Wang, X.; Ren, X.; Hu, S.; Wen, J.; Tan, Z.; Marwani, H. M. J. Ind. Eng. Chem. 2018, 67, 380.  doi: 10.1016/j.jiec.2018.07.012

    22. [22]

      Birnbaum, J. C.; Busche, B.; Lin, Y.; Shaw, W. J.; Fryxell, G. E. Chem. Commun. 2002, 1374.
       

    23. [23]

      Ren, X.; Yang, S.; Tan, X.; Chen, C.; Sheng, G.; Wang, X. J. Hazard. Mater. 2012, 237, 199.
       

    24. [24]

      Yantasee, W.; Fryxell, G. E.; Addleman, R. S.; Wiacek, R. J.; Koonsiripaiboon, V.; Pattamakomsan, K.; Xu, J.; Raymond, K. N. J. Hazard. Mater. 2009, 168, 1233.  doi: 10.1016/j.jhazmat.2009.03.004

    25. [25]

      Ma, T.; Yuan, Z. Dalton Trans. 2010, 39, 9570.  doi: 10.1039/c0dt00179a

    26. [26]

      Venkateswarlu, S.; Yoon, M. RSC Adv. 2015, 5, 65444.  doi: 10.1039/C5RA10628A

    27. [27]

      Zhu, Y.; Liu, Y.; Ren, T.; Yuan, Z. Nanoscale 2014, 6, 6627.  doi: 10.1039/C4NR00629A

    28. [28]

      Das, S.; Pandey, A. K.; Athawale, A. A.; Natarajan, V.; Manchanda, V. K. Water Treat. 2012, 38, 1140.
       

    29. [29]

      Yang, Y.; Yan, Z.; Wang, L.; Meng, Q.; Yuan, Y.; Zhu, G. J. Mater. Chem. A 2018, 6, 5202.  doi: 10.1039/C8TA00382C

    30. [30]

      Yuan, Y.; Sun, F.; Zhang, F.; Ren, H.; Jing, X.; Gao, X. Adv. Mater. 2013, 25, 6619.  doi: 10.1002/adma.201301955

    31. [31]

      Yuan, Y.; Sun, F.; Li, L.; Cui, P.; Zhu, G. Nat. Commun. 2014, 4260.
       

    32. [32]

      Li, L.-N. Ph.D. Dissertation, Jilin University, Changchun, 2015 (in Chinese).

    33. [33]

      Egawa, H.; Nonaka, T.; Ikari, M. J. Appl. Polym. Sci. 2010, 29, 2045.
       

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(11)
  • Abstract views(761)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return