Citation: Fu Wenwen, Li Yan, Liang Changhai. Dehydrogenation Mechanism of Ethanol on Co(111) Surface: A First-principles Study[J]. Acta Chimica Sinica, ;2019, 77(6): 559-568. doi: 10.6023/A19010020 shu

Dehydrogenation Mechanism of Ethanol on Co(111) Surface: A First-principles Study

  • Corresponding author: Li Yan, snow2007liyan@163.com Liang Changhai, changhai@dlut.edu.cn
  • Received Date: 10 January 2019
    Available Online: 12 June 2019

    Fund Project: the National Natural Science Foundation of China 21573031Project supported by the National Natural Science Foundation of China (No. 21573031)

Figures(11)

  • The detailed reaction mechanism of ethanol dehydrogenation on Co(111) surface was studied using the density functional theory (DFT) and slab periodic model. The structures and energies of the species involved in the reaction adsorbed on different adsorption sites (top, fcc, hcp and bridge sites) of the surface were calculated and compared. The calculated results show that ethanol adsorbs weakly on the Co(111) surface. CH3CH2O, CH and C prefer hcp sites with adsorption energies of -2.72, -6.85, and -6.92 eV, respectively. CH3CHO adsorbs weakly at the bridge-η1(O)-η1(Cα) site with adsorption energy of -0.47 eV. CH3CO and CH2 adsorb stably on Co(111) surface through their unsaturated C atoms with binding energies of -2.31 and -3.90 eV, respectively. CH3 and CH4 prefer to locate at top sites through the C atom with adsorption energies of -1.95 and -0.12 eV, respectively. CO and H are bind stably at fcc sites with binding energies of -1.62 and -2.77 eV, respectively. Due to the complexity of the decomposition of ethanol, the scissions of O-H, C-H, C-O and C-C bonds of CH3CH2OH were examined. The results show that ethanol decomposition on Co(111) surface starts with the scission of the O-H bond, and the dehydrogenation reaction of ethanol on Co(111) surface can be described as three reaction pathways:Path Ⅰ is the gradual dehydrogenation of CH3CH2OH via intermediate CH3CHO, which ultimately produces CH4 and CO; Path Ⅱ is the reaction of CH3CH2O and CH3CHO which were generated by dehydrogenation of ethanol, to form CH4 and CO2 via CH3COOH intermediate; Path Ⅲ is the process of CH3CH2O reacts with CH3CO to generate CH3COOC2H5. On the basis of our computational results, Path Ⅰ (CH3CH2OH→CH3CH2O→CH3CHO→CH3CO→CH3+CO→CH2→CH→CH4+CO+C+H) is more favorable than Paths Ⅱ and Ⅲ and the dehydrogenation of CH3CH2O to CH3CHO is the rate-determining step with a reaction energy barrier of 1.61 eV.
  • 加载中
    1. [1]

      Dunn, S. Int. J. Hydrogen Energy 2002, 27, 235.  doi: 10.1016/S0360-3199(01)00131-8

    2. [2]

      Navarro, R. M.; Peña, M. A.; Fierro, J. L. G. Chem. Rev. 2007, 107, 3952.  doi: 10.1021/cr0501994

    3. [3]

      Song, C. S. Catal. Today 2006, 115, 2.  doi: 10.1016/j.cattod.2006.02.029

    4. [4]

      Öhgren, K.; Rudolf, A.; Galbe, M.; Zacchi, G. Biomass Bioenergy 2006, 30, 863.  doi: 10.1016/j.biombioe.2006.02.002

    5. [5]

      Rao, L.; Jiang, Y. X.; Zhang, B. W.; You, L. X.; Li, Z. H.; Sun, S. G. Prog. Chem. 2014, 26, 727(in Chinese).

    6. [6]

      Rodríguez, L. A.; Toro, M. E.; Vazquez, F.; Correa-Daneri, M. L.; Gouiric, S. C.; Vallejo, M. D. Int. J. Hydrogen Energy 2010, 35, 5914.  doi: 10.1016/j.ijhydene.2009.12.112

    7. [7]

      Lamy, C.; Belgsir, E. M.; Léger, J. M. J. Appl. Electrochem. 2001, 31, 799.  doi: 10.1023/A:1017587310150

    8. [8]

      Llorca, J.; Homs, N.; Sales, J.; de la Poscina, P. R. J. Catal. 2002, 209, 306.  doi: 10.1006/jcat.2002.3643

    9. [9]

      Meng, C.; Wang, H.; Wu, Y. B.; Fu, X. Z.; Yuan, R. S. Acta Chim. Sinica 2017, 75, 508(in Chinese).
       

    10. [10]

      Wu, K. H.; Zhou, Y. W.; Ma, X. Y.; Ding, C.; Cai, W. B. Acta Chim. Sinica 2018, 76, 292(in Chinese).  doi: 10.7503/cjcu20170465
       

    11. [11]

      Van Der Laan, G. P.; Beenackers, A. A. C. M. Catal. Rev. 1999, 41, 255.  doi: 10.1081/CR-100101170

    12. [12]

      Shekhar, R.; Barteau, M. A. Catal. Lett. 1995, 31, 221.  doi: 10.1007/BF00808835

    13. [13]

      Bowker, M.; Holroyd, R. P.; Sharpe, R. G.; Corneille, J. S.; Francis, S. M.; Goodman, D. W. Surf. Sci. 1997, 370, 113.  doi: 10.1016/S0039-6028(96)00959-4

    14. [14]

      Lee, A. F.; Naughton, J. N.; Liu, Z.; Wilson, K. ACS Catal. 2012, 2, 2235.  doi: 10.1021/cs300450y

    15. [15]

      Lee, A. F.; Gawthrope, D. E.; Hart, N. J.; Wilson, K. Surf. Sci. 2004, 548, 200.  doi: 10.1016/j.susc.2003.11.004

    16. [16]

      Vigier, F.; Coutanceau, C.; Hahn, F.; Belgsir, E. M.; Lamy, C. J. Electroanal. Chem. 2004, 563, 81.  doi: 10.1016/j.jelechem.2003.08.019

    17. [17]

      Gates, S. M.; Russell Jr, J. N.; Yates Jr, J. T. Surf. Sci. 1986, 171, 111.  doi: 10.1016/0039-6028(86)90565-0

    18. [18]

      Resini, C.; Montanari, T.; Barattini, L.; Ramis, G.; Presto, S.; Riani, P.; Costantino, U. Appl. Catal., A 2009, 355, 83.  doi: 10.1016/j.apcata.2008.11.029

    19. [19]

      Tian, Z. J.; Wei, X. M.; Zhai, R. S.; Ren, S. Z.; Liang, D. B.; Lin, L. W. Chem. Res. Chin. Univ. 1997, 7, 1158.

    20. [20]

      Vicente, J.; Montero, C.; Ereña, J.; Azkoiti, M. J.; Bilbao, J.; Gayubo, A. G. Int. J. Hydrogen Energy 2014, 39, 12586.  doi: 10.1016/j.ijhydene.2014.06.093

    21. [21]

      Wachs, I. E.; Madix, R. J. Appl. Surf. Sci. 1978, 1, 303.  doi: 10.1016/0378-5963(78)90034-X

    22. [22]

      Zhang, M.; Yao, R.; Jiang, H.; Li, G. RSC Adv. 2017, 7, 1443.  doi: 10.1039/C6RA26373A

    23. [23]

      Qiu, C. W.; Wu, B. S.; Meng, S. C.; Li, Y. W. Acta Chim. Sinica 2015, 73, 690(in Chinese).
       

    24. [24]

      Sun, Y. H.; Chen, J. G.; Wang, J. G.; Jia, L. T.; Hou, B.; Li, D. B.; Zhang, J. J. Chin. Catal. 2010, 31, 919(in Chinese).

    25. [25]

      Dry, M. E. Catal. Today 2002, 71, 227.  doi: 10.1016/S0920-5861(01)00453-9

    26. [26]

      Liu, J. X.; Su, H. Y.; Sun, D. P.; Zhang, B. Y.; Li, W. X. J. Am. Chem. Soc. 2013, 135, 16284.  doi: 10.1021/ja408521w

    27. [27]

      Xu, L. S.; Ma, Y. S.; Zhang, Y. L.; Chen, B.; Wu, Z.; Jiang, Z.; Huang, W. J. Phys. Chem. C 2010, 114, 17023.  doi: 10.1021/jp102788x

    28. [28]

      Lv, B. L.; Chen, G. Q.; Zhou, W. L.; Su, H. Comput. Mater. Sci. 2013, 68, 206.  doi: 10.1016/j.commatsci.2012.10.031

    29. [29]

      Balakrishnan, N.; Joseph, B.; Bhethanabotla, V. R. Surf. Sci. 2012, 606, 634.  doi: 10.1016/j.susc.2011.11.033

    30. [30]

      van Helden, P.; van den Berg, J. A.; Weststrate, C. J. ACS Catal. 2012, 2, 1097.  doi: 10.1021/cs2006586

    31. [31]

      Pour, A. N.; Keyvanloo, Z.; Izadyar, M.; Modaresi, S. M. Int. J. Hydrogen Energy 2015, 40, 7064.  doi: 10.1016/j.ijhydene.2015.04.028

    32. [32]

      Swart, J. C. W.; Ciobîcä, L. M.; van Santen, R. A.; van Steen, E. J. Phys. Chem. C 2008, 112, 12899.  doi: 10.1021/jp803305s

    33. [33]

      Kitakami, O.; Sato, H.; Shimada, Y.; Sato, F.; Tanaka, M. Phys. Rev. B 1997, 56, 13849.  doi: 10.1103/PhysRevB.56.13849

    34. [34]

      Ashok, A.; Kumar, A.; Bhosale, R.; Saad, M. A. S.; AlMomani, F.; Tarlochan, F. Int. J. Hydrogen Energy 2017, 42, 23464.  doi: 10.1016/j.ijhydene.2017.01.175

    35. [35]

      Kresse, G.; Furthmuller, J. Phys. Rev. B:Condens. Matter 1996, 54, 11169.  doi: 10.1103/PhysRevB.54.11169

    36. [36]

      Kresse, G.; Hafner, J. Phys. Rev. B:Condens. Matter Mater. Phys. 1994, 49, 14251.  doi: 10.1103/PhysRevB.49.14251

    37. [37]

      Kresse, G.; Hafner, J. Phys. Rev. B:Condens. Matter Mater. Phys. 1993, 48, 13115.  doi: 10.1103/PhysRevB.48.13115

    38. [38]

      Kresse, G.; Hafner, J. Phys. Rev. B:Condens. Matter Mater. Phys. 1993, 47, 558.  doi: 10.1103/PhysRevB.47.558

    39. [39]

      Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15.  doi: 10.1016/0927-0256(96)00008-0

    40. [40]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  doi: 10.1103/PhysRevLett.77.3865

    41. [41]

      Blöchl, P. E. Phys. Rev. B:Condens. Matter 1994, 50, 17953.  doi: 10.1103/PhysRevB.50.17953

    42. [42]

      Kresse, G.; Joubert, D. Phys. Rev. B:Condens. Matter Mater. Phys. 1999, 59, 1758.  doi: 10.1103/PhysRevB.59.1758

    43. [43]

      Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.  doi: 10.1103/PhysRevB.13.5188

    44. [44]

      Häglund, J.; Guillermet, A. F.; Grimvall, G.; Körling, M. Phys. Rev. B 1993, 48, 11685.  doi: 10.1103/PhysRevB.48.11685

    45. [45]

      Chen, C.; Wang, Q.; Wang, G.; Hou, B.; Jia, L.; Li, D. J. Phys. Chem. C 2016, 120, 9132.  doi: 10.1021/acs.jpcc.5b09634

    46. [46]

      Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901.

    47. [47]

      Henkelman, G.; Jónsson, H. J. Chem. Phys. 2000, 113, 9978.

    48. [48]

      CRC Handbook of Chemistry and Physics, 3rd electronic ed., Ed.: Lide, D. R., CRC Press, Boca Raton, Florida, 2000, Chapter 9, p. 31.

    49. [49]

      Li, M.; Guo, W. Y.; Jiang, R. B.; Zhao, L. M.; Lu, X. Q.; Zhu, H. Y.; Fu, D. L.; Shan, H. H. J. Phys. Chem. C 2010, 114, 21493.  doi: 10.1021/jp106856n

    50. [50]

      Li, M. R.; Chen, J.; Wang, G. C. J. Phys. Chem. C 2016, 120, 14198.  doi: 10.1021/acs.jpcc.6b04036

    51. [51]

      Christmann, K.; Demuth, J. E. J. Chem. Phys. 1982, 76, 6308.  doi: 10.1063/1.443034

    52. [52]

      Davis, J. L.; Barteau, M. A. J. Am. Chem. Soc. 1989, 111, 1782.  doi: 10.1021/ja00187a035

    53. [53]

      Luo, W. J.; Asthagiri, A. J. Phys. Chem. C 2014, 118, 15274.  doi: 10.1021/jp503177h

    54. [54]

      Zhong, W. H.; Zhang, D. J. Catal. Commun. 2012, 29, 82.  doi: 10.1016/j.catcom.2012.09.002

    55. [55]

      Park, S.; Xie, Y.; Weaver, M. J. Langmuir 2002, 18, 5792.  doi: 10.1021/la0200459

    56. [56]

      Oğuz, I. C.; Mineva, T.; Guesmi, H. J. Chem. Phys. 2018, 148, 024701.

    57. [57]

      Liu, J.; Fan, X. F.; Sun, C. Q.; Zhu, W. G. Appl. Surf. Sci. 2018, 441, 23.  doi: 10.1016/j.apsusc.2018.02.010

    58. [58]

      Liang, Y. Y.; Chen, L. T.; Ma, C. A. Surf. Sci. 2017, 656, 7.  doi: 10.1016/j.susc.2016.08.009

    59. [59]

      Ma, C. A.; Liu, T.; Chen, L. T. Appl. Surf. Sci. 2010, 256, 7400.  doi: 10.1016/j.apsusc.2010.05.080

    60. [60]

      Ding, Q. Y.; Xu, W. B.; Sang, P. P.; Xu, J.; Zhao, L. M.; He, X. L.; Guo, W. Y. Appl. Surf. Sci. 2016, 369, 257.  doi: 10.1016/j.apsusc.2015.11.104

    61. [61]

      Qi, Y.; Yang, J.; Duan, X.; Zhu, Y. A.; Chen, D.; Holmen, A. Catal. Sci. Technol. 2014, 4, 3534.  doi: 10.1039/C4CY00566J

    62. [62]

      van Helden, P.; van den Berg, J. A.; Weststrate, C. J. ACS Catal. 2012, 2, 1097.  doi: 10.1021/cs2006586

    63. [63]

      Hyman, M. P.; Vohs, J. M. Surf. Sci. 2011, 605, 383.  doi: 10.1016/j.susc.2010.11.005

    64. [64]

      Llorca, J.; Homs, N.; de la Piscina, P. R. J. Catal. 2004, 227, 556.  doi: 10.1016/j.jcat.2004.08.024

    65. [65]

      Wang, H. F.; Liu, Z. P. J. Am. Chem. Soc. 2008, 130, 10996.  doi: 10.1021/ja801648h

    66. [66]

      Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Catal. Today 2005, 105, 66.  doi: 10.1016/j.cattod.2005.04.008

    67. [67]

      Wei, Z. Z.; Li, D. C.; Pang, X. Y.; Lv, C. Q.; Wang, G. C. Chem-CatChem 2012, 4, 100.

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    14. [14]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    17. [17]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(31)
  • Abstract views(1569)
  • HTML views(302)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return