Citation: Xu Xiaona, Han Bin, Yu Xi, Zhu Yanying. New Progress in Molecular Electronics[J]. Acta Chimica Sinica, ;2019, 77(6): 485-499. doi: 10.6023/A19010019 shu

New Progress in Molecular Electronics

  • Corresponding author: Yu Xi, xi.yu@tju.edu.cn Zhu Yanying, yywlxzyy@163.com
  • Received Date: 10 January 2019
    Available Online: 12 June 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21773169)the National Natural Science Foundation of China 21773169

Figures(33)

  • Molecular-scale electronics studies the charge transport properties across molecules by constructing "elec-trode-molecule-electrode" junctions based on the molecular electrodes and single molecule or small amounts of molecular aggregates. It examines the structure-property relationship between the physical and chemical properties of the molecule and the charge transport by combining the intrinsic chemical properties of molecule with device architecture, reveals the micro-scale quantum transport mechanics principle, and explores molecular-based functional electronic devices. It is a research field that integrates chemistry, physics and microelectronics. In this review, we summarize some of the representative progress of molecular electronics in basic research (device preparation, transport mechanism) and applications in recent years.
  • 加载中
    1. [1]

      Feynman, R. Engineering and Science 1960, 23, 8.

    2. [2]

      Ratner, M. A.; Aviram, A. Chem. Phys. Lett. 1974, 29, 277.  doi: 10.1016/0009-2614(74)85031-1

    3. [3]

      Jiang, L.; Huang, G. F.; Li, H. X.; Li, X. F.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Prog. Chem. 2005, 17, 172(in Chinese).  doi: 10.3321/j.issn:1005-281X.2005.01.020

    4. [4]

      Ai, Y.; Zhang, H. L. Acta Phys-Chim. Sin. 2012, 28, 2237. (in Chinese).  doi: 10.3866/PKU.WHXB201209102

    5. [5]

      Zhou, C.; Reed, M. A.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science 1997, 278, 3.

    6. [6]

      Yang, W. R.; Jones, M. W.; Li, X.; Eggers, P. K.; Tao, N. J.; Gooding, J.; Paddon-Row, M. N. J. Phys. Chem. C 2008, 112, 9072.  doi: 10.1021/jp802328b

    7. [7]

      Vilan, A.; Aswal, D.; Cahen, D. Chem. Rev. 2017, 117, 4248.  doi: 10.1021/acs.chemrev.6b00595

    8. [8]

      Chen, S.; Liu, Y.; Chen, J. Chem. Soc. Rev. 2014, 43, 5372.  doi: 10.1039/C4CS00087K

    9. [9]

      Sun, L.; Diaz-Fernandez, Y. A.; Gschneidtner, T. A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Chem. Soc. Rev. 2014, 43, 7378.  doi: 10.1039/C4CS00143E

    10. [10]

      Kuo, C. T.; Su, L. C.; Chen, C. H. J. Am. Chem. Soc. 2014, 61, 101.

    11. [11]

      Ratner, M. Nature Nanotech. 2013, 8, 378.  doi: 10.1038/nnano.2013.110

    12. [12]

      Zimbovskaya, N. A.; Pederson, M. R. Phys. Rep. 2011, 509, 1.  doi: 10.1016/j.physrep.2011.08.002

    13. [13]

      Aradhya, S. V.; Venkataraman, L. Nature Nanotech. 2013, 8, 399.  doi: 10.1038/nnano.2013.91

    14. [14]

      Claridge, S. A.; Schwartz, J. J.; Weiss, P. S. ACS Nano 2011, 5, 693.  doi: 10.1021/nn103298x

    15. [15]

      Song, H.; Reed, M. A.; Lee, T. Adv. Mater. 2011, 23, 1583.  doi: 10.1002/adma.201004291

    16. [16]

      Chen, F.; Tao, N. J. Acc. Chem. Res. 2009, 42, 429.  doi: 10.1021/ar800199a

    17. [17]

      Heath, J. R. Annu. Rev. Mater. Res. 2009, 39, 1.  doi: 10.1146/annurev-matsci-082908-145401

    18. [18]

      Poulsen, K. M.; Bjornholm, T. Nature Nanotech. 2009, 4, 551.  doi: 10.1038/nnano.2009.176

    19. [19]

      McCreery, R. L.; Bergren, A. J. Adv. Mater. 2009, 21, 4303.  doi: 10.1002/adma.v21:43

    20. [20]

      Akkerman, H. B.; de Boer, B. J. Phys. Condens. Matter. 2008, 20, 013001.  doi: 10.1088/0953-8984/20/01/013001

    21. [21]

      Nitzan, A.; Ratner, M. A. Science 2003, 300, 1384.  doi: 10.1126/science.1081572

    22. [22]

      Su, T. A.; Neupane, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Nat. Rev. Mater. 2016, 1, 16002.  doi: 10.1038/natrevmats.2016.2

    23. [23]

      Zhang, X.; Li, T. Chin. Chem. Lett. 2017, 28, 2058.  doi: 10.1016/j.cclet.2017.09.008

    24. [24]

      Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318.  doi: 10.1021/acs.chemrev.5b00680

    25. [25]

      Cuevas, J. C.; Scheer, E. Molecular Electronics, 2nd ed., USA: World Scientific Publishing Co, 2017, pp. 1~826.

    26. [26]

      Li, J. C.; Wu, J. Z.; Zhou, C.; Gong, X. Acta Phys.-Chim. Sin. 2013, 29, 1123(in Chinese).  doi: 10.3866/PKU.WHXB201304014

    27. [27]

      Yang, Y.; Liu, J. Y.; Yan, R. W.; Wu, D. Y.; Tian, Z. Q. Chem. J. Chin. Univ. 2015, 36, 9(in Chinese).

    28. [28]

      Chen, F.; Hihath, J.; Huang, Z.; Li, X.; Tao, N. J. Annu. Rev. Phys. Chem. 2007, 58, 535.  doi: 10.1146/annurev.physchem.58.032806.104523

    29. [29]

      Xu, B. Q.; Tao, N. J. Science 2003, 301, 1221.  doi: 10.1126/science.1087481

    30. [30]

      Guo, S.; Hihath, J.; Diez-Perez, I.; Tao, N. J. J. Am. Chem. Soc. 2011, 133, 19189.  doi: 10.1021/ja2076857

    31. [31]

      Baldea, I. Phys. Rev. B 2012, 85, 9222.

    32. [32]

      Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. J. J. Am. Chem. Soc. 2006, 128, 15874.  doi: 10.1021/ja065864k

    33. [33]

      Hines, T.; Diez-Perez, I.; Nakamura, H.; Shimazaki, T.; Asai, Y.; Tao, N. J. J. Am. Chem. Soc. 2013, 135, 3319.  doi: 10.1021/ja3106434

    34. [34]

      Li, H.; Su, T. A.; Zhang, V.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. J. Am. Chem. Soc. 2015, 137, 5028.  doi: 10.1021/ja512523r

    35. [35]

      Dell, E. J.; Capozzi, B.; DuBay, K. H.; Berkelbach, T. C.; Moreno, J. R.; Reichman, D. R.; Venkataraman, L.; Campos, L. M. J. Am. Chem. Soc. 2013, 135, 11724.  doi: 10.1021/ja4055367

    36. [36]

      Wold, D. J.; Frisbie, C. D. J. Am. Chem. Soc. 2000, 122, 2970.  doi: 10.1021/ja994468h

    37. [37]

      Aradhya, S. V.; Frei, M.; Hybertsen, M. S.; Venkataraman, L. Nat. Mater. 2012, 11, 872.  doi: 10.1038/nmat3403

    38. [38]

      Nazin, G. V.; Wu, S. W.; Ho, W. PNAS 2005, 102, 8832.  doi: 10.1073/pnas.0501171102

    39. [39]

      Zhou, J.; Chen, F.; Xu, B. Q. J. Am. Chem. Soc. 2009, 131, 10439.  doi: 10.1021/ja900989a

    40. [40]

      Zhou, J.; Chen, G.; Xu, B. Q. J. Phys. Chem. C 2010, 114, 8587.  doi: 10.1021/jp101257y

    41. [41]

      Moreland, J.; Ekin, J. W. J. Appl. Phys. 1985, 58, 3888.  doi: 10.1063/1.335608

    42. [42]

      Muller, C. J.; van Ruitenbeek, J. M.; de Jongh, L. J. Phys. Rev. Lett. 1992, 69, 140.  doi: 10.1103/PhysRevLett.69.140

    43. [43]

      Tian, J. H.; Liu, B.; Li, X.; Yang, Z. L.; Ren, B.; Wu, S. T.; Tao, N. J.; Tian, Z. Q. J. Am. Chem. Soc. 2006, 128, 14748.  doi: 10.1021/ja0648615

    44. [44]

      Xiang, D.; Jeong, H.; Kim, D.; Lee, T.; Cheng, Y.; Wang, Q.; Mayer, D. Nano Lett. 2013, 13, 2809.  doi: 10.1021/nl401067x

    45. [45]

      Holmlin, R. E.; Ismagilov, R. F.; Haag, R.; Mujica, V.; Ratner, M. A.; Rampi, M. A.; Whitesides, G. M. Angew. Chem., Int. Ed. Engl. 2001, 40, 2316.  doi: 10.1002/1521-3773(20010618)40:12<2316::AID-ANIE2316>3.0.CO;2-#

    46. [46]

      Thuo, M. M.; Reus, W. F.; Nijhuis, C. A.; Barber, J. R.; Kim, C.; Schulz, M. D.; Whitesides, G. M. J. Am. Chem. Soc. 2011, 133, 2962.  doi: 10.1021/ja1090436

    47. [47]

      Nijhuis, C. A.; Reus, W. F.; Barber, J. R.; Dickey, M. D.; Whitesides, G. M. Nano Lett. 2010, 10, 3611.  doi: 10.1021/nl101918m

    48. [48]

      Chiechi, R. C.; Weiss, E. A.; Dickey, M. D.; Whitesides, G. M. Angew. Chem., Int. Ed. Engl. 2008, 47, 142.  doi: 10.1002/(ISSN)1521-3773

    49. [49]

      Senthil kumar, K.; Jiang, L.; Nijhuis, C. A. RSC Adv. 2017, 7, 14544.  doi: 10.1039/C6RA27280K

    50. [50]

      Walker, A. V.; Tighe, T. B.; Haynie, B. C.; Uppili, S.; Winograd, N.; Allara, D. L. J. Phys. Chem. B 2005, 109, 11263.  doi: 10.1021/jp0506484

    51. [51]

      Mahmoud, A. M.; Bergren, A. J.; Pekas, N.; McCreery, R. L. Adv. Funct. Mater. 2011, 21, 2273.  doi: 10.1002/adfm.v21.12

    52. [52]

      Zhu, Z.; Daniel, T. A.; Maitani, M.; Cabarcos, O. M.; Allara, D. L.; Winograd, N. J. Am. Chem. Soc. 2006, 128, 13710.  doi: 10.1021/ja060084x

    53. [53]

      Walker, A. V.; Tighe, T. B.; Cabarcos, O. M.; Reinard, M. D.; Haynie, B. C.; Uppili, S.; Winograd, N.; Allara, D. L. J. Am. Chem. Soc. 2004, 126, 3954.  doi: 10.1021/ja0395792

    54. [54]

      DeIonno, E.; Tseng, H. R.; Harvey, D. D.; Stoddart, J. F.; Heath, J. R. J. Phys. Chem. B 2006, 110, 7609.

    55. [55]

      Bonifas, A. P.; McCreery, R. L. Nat. Nanotechnol. 2010, 5, 612.  doi: 10.1038/nnano.2010.115

    56. [56]

      Honciuc, A.; Metzger, R. M.; Gong, A.; Spangler, C. W. J. Am. Chem. Soc. 2007, 129, 8310.  doi: 10.1021/ja068729g

    57. [57]

      Bonifas, A. P.; McCreery, R. L. Nano Lett. 2011, 11, 4725.  doi: 10.1021/nl202495k

    58. [58]

      Akkerman, H. B.; Blom, P. W. M.; de Leeuw, D. M.; de Boer, B. Nature 2006, 441, 69.  doi: 10.1038/nature04699

    59. [59]

      Katsouras, I.; Piliego, C.; Blom, P. W. M.; Leeuwa, D. M. Nanoscale 2013, 5, 9882.  doi: 10.1039/c3nr03183g

    60. [60]

      Puebla-Hellmann, G.; Venkatesan, K.; Mayor, M.; Lörtscher, E. Nature 2018, 559, 232.  doi: 10.1038/s41586-018-0275-z

    61. [61]

      Noy, G.; Ophir, A.; Selzer, Y. Angew. Chem., Int. Ed. Engl. 2010, 49, 5734.  doi: 10.1002/anie.v49:33

    62. [62]

      Rigaut, S. Dalton Trans. 2013, 42, 15859.  doi: 10.1039/c3dt51487k

    63. [63]

      Choi, S. H.; Kim, B.; Frisbie, C. D. Science 2008, 320, 1482.  doi: 10.1126/science.1156538

    64. [64]

      Wang, W.; Lee, T.; Reed, M. A. Phys. Rev. B 2003, 68, 035416-1.

    65. [65]

      Jeremy, B. K.; Beebe, M.; Frisbie, C. D.; Kushmerick, J. G. ACS Nano 2008, 2, 827.  doi: 10.1021/nn700424u

    66. [66]

      Vilan, A.; Cahen, D.; Kraisler, E. ACS Nano 2013, 7, 695.  doi: 10.1021/nn3049686

    67. [67]

      Huisman, E. H.; Guedon, C. M.; Wees, B. J.; van der Molen, S. J. Nano Lett. 2009, 9, 3909.  doi: 10.1021/nl9021094

    68. [68]

      Jia, C. C.; Guo, X. Chem. Soc. Rev. 2013, 42, 5642.  doi: 10.1039/c3cs35527f

    69. [69]

      Baldea, I.; Xie, Z.; Frisbie, C. D. Nanoscale 2015, 7, 10465.  doi: 10.1039/C5NR02225H

    70. [70]

      Widawsky, J. R.; Kamenetska, M.; Klare, J.; Nuckolls, C.; Stei-gerwald, M. L.; Hybertsen, M. S.; Venkataraman, L. Nanotechnology 2009, 20, 434009.  doi: 10.1088/0957-4484/20/43/434009

    71. [71]

      Lee, W.; Reddy, P. Nanotechnology 2011, 22, 485703.  doi: 10.1088/0957-4484/22/48/485703

    72. [72]

      Baldea, I. Nanoscale. 2013, 5, 9222.  doi: 10.1039/c3nr51290h

    73. [73]

      Chen, J.; Calvet, L. C.; Reed, M. A.; Carr, D. W.; Grubisha, D. S.; Bennett, D. W. Chem. Phys. Lett. 1999, 313, 741.  doi: 10.1016/S0009-2614(99)01060-X

    74. [74]

      Selzer, Y.; Cabassi, M. A.; Mayer, T. S.; Allara, D. L. J. Am. Chem. Soc. 2004, 126, 4052.  doi: 10.1021/ja039015y

    75. [75]

      Choi, S. H.; Risko, C.; Delgado, M. C. R.; Kim, B.; Bredas, J. L.; Frisbie, C.D. J. Am. Chem. Soc. 2010, 132, 4358.  doi: 10.1021/ja910547c

    76. [76]

      Hill, M. G.; Treadway, C. R.; Barton, J. K. Chem. Phys. 2002, 281, 409.  doi: 10.1016/S0301-0104(02)00447-0

    77. [77]

      Kelley, S. O.; Barton, J. K. Science 1999, 283, 375.  doi: 10.1126/science.283.5400.375

    78. [78]

      Eley, D. D.; Spivey, D. I. Trans. Faraday Soc. 1962, 58, 411.  doi: 10.1039/TF9625800411

    79. [79]

      Genereux, J. C.; Barton, J. K. Chem. Rev. 2010, 110, 1642.  doi: 10.1021/cr900228f

    80. [80]

      Xiang, L.; Palma, J. L.; Bruot, C.; Mujica, V.; Ratner, M. A.; Tao, N. J. Nat. Chem. 2015, 7, 221.  doi: 10.1038/nchem.2183

    81. [81]

      Bostick, C. D.; Mukhopadhyay, S.; Pecht, I.; Sheves, M.; Cahen, D.; Lederman, D. Rep. Prog. Phys. 2018, 81, 026601.  doi: 10.1088/1361-6633/aa85f2

    82. [82]

      Amdursky, N.; Marchak, D.; Sepunaru, L.; Pecht, I.; Sheves, M.; Cahen, D. Adv. Mater. 2014, 26, 7142.  doi: 10.1002/adma.v26.42

    83. [83]

      Andrews. D. Q.; Solomon, G. C.; Goldsmith, R. H.; Hansen, T.; Wasielewski, M. R.; Duyne, R. P.; Ratner, M. A. J. Am. Chem. Soc. 2008, 130, 17301.  doi: 10.1021/ja8044053

    84. [84]

      Hong, W. J.; Valkenier, H.; Meszaros, G.; Manrique, D. Z.; Mishchenko, A.; Putz, A.; Garcia, P. M.; Lambert, C. J.; Hummelen, J. C.; Wandlowski, T. Beilstein J. Nanotechnol. 2011, 2, 699.  doi: 10.3762/bjnano.2.76

    85. [85]

      Fracasso, D.; Valkenier, H.; Hummelen, J. C.; Solomon, G. C.; Chiechi, R. C. J. Am. Chem. Soc. 2011, 133, 9556  doi: 10.1021/ja202471m

    86. [86]

      Guedon, C. M.; Valkenier, H.; Markussen, T.; Thygesen, K. S.; Hummelen, J. C.; Molen, S. J. Nat. Nanotechnol. 2012, 7, 304..

    87. [87]

      Rabache, V.; Chaste, J.; Petit, P.; Della Rocca, M. L.; Martin, P.; Lacroix, J. C.; McCreery, R. L.; Lafarge, P. J. Am. Chem. Soc. 2013, 135, 10218.  doi: 10.1021/ja403577u

    88. [88]

      Manrique, D. Z.; Huang, C.; Baghernejad, M.; Zhao, X.; AlOwaedi, O. A.; Sadeghi, H.; Kaliginedi, V.; Hong, W. J.; Wandlowski, M.; Gulcur, T.; Bryce, M. R.; Lambert, C. J. Nat. Commun. 2015, 6, 6389.  doi: 10.1038/ncomms7389

    89. [89]

      Liu, X. S.; Sangtarash, S.; Reber, D.; Zhang, D.; Sadeghi, H.; Shi, J.; Xiao, Z.; Hong, W. J.; Lambert, C. J.; Liu, S. X. Angew. Chem., Int. Ed. Engl. 2017, 56, 173.  doi: 10.1002/anie.201609051

    90. [90]

      Zhang, P.; Chen, L. C.; Zhang, Z. Q.; Cao, J. J.; Tang, C.; Liu, J.; Duan, L. L.; Huo, Y.; Shao, X.; Hong, W. J.; Zhang, H. L. J. Am. Chem. Soc. 2018, 140, 6531.  doi: 10.1021/jacs.8b02825

    91. [91]

      Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X.; Tang, Y.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X.; Tan, Z.; Liu, J.; Yang, Y.; Shi, J.; Meszaros, G.; Chen, W.; Lambert, C.; Hong, W. J. Nat. Mater. 2019.

    92. [92]

      Liu, J.; Huang, X.; Wang, F.; Hong, W. J. Acc. Chem. Res. 2019, 52, 151.  doi: 10.1021/acs.accounts.8b00429

    93. [93]

      Dong, H.; Deng, N.; Chen, P. Y. World Science and Technology Research and Development 2005, 27, 1(in Chinese).

    94. [94]

      Dhirani, A.; Lin, P. H.; Sionnest, P. G.; Zehner, R. W.; Sita, L. R. J. Chem. Phys. 1997, 106, 6.

    95. [95]

      Metzger, R. M.; Xu, T.; Peterson, I. R. J. Phys. Chem. B 2001, 105, 7280.  doi: 10.1021/jp011084g

    96. [96]

      Diez-Perez, I.; Hihath, J.; Lee, Y.; Yu, L.; Adamska, L.; Kozhushner, M. A.; Oleynik, I. I.; Tao, N. J. Nat. Chem. 2009, 1, 635.  doi: 10.1038/nchem.392

    97. [97]

      Kushmerick, J. G.; Whitaker, C. M.; Pollack, S. K.; T Schull, . L.; Shashidhar, R. Nat. Nanotechnol. 2004, 15, S489.  doi: 10.1088/0957-4484/15/7/058

    98. [98]

      Wang, K.; Zhou, J.; Hamill, J. M.; Xu, B. Q. J. Chem. Phys. 2014, 141, 054712.  doi: 10.1063/1.4891862

    99. [99]

      Batra, A.; Darancet, P.; Chen, Q.; Meisner, J. S.; Widawsky, J. R.; Neaton, J. B.; Nuckolls, C.; Venkataraman, L. Nano Lett. 2013, 13, 6233.  doi: 10.1021/nl403698m

    100. [100]

      Nijhuis, C. A.; Reus, W. F.; Whitesides, G. M. J. Am. Chem. Soc. 2010, 132, 18386.  doi: 10.1021/ja108311j

    101. [101]

      Nijhuis, C. A.; Reus, W. F.; Siegel, A. C.; Whitesides, G. M. J. Am. Chem. Soc. 2011, 133, 15397.  doi: 10.1021/ja201223n

    102. [102]

      Chen, X.; Roemer, M.; Yuan, L.; Du, W.; Thompson, D.; Del Barco, E.; Nijhuis, C. A. Nat. Nanotechnol. 2017, 12, 797.  doi: 10.1038/nnano.2017.110

    103. [103]

      Katsonis, N.; Kudernac, T.; Walko, M.; Molen, S. J.; Wees, B. J.; Feringa, B. L. Adv. Mater. 2006, 18, 1397.  doi: 10.1002/(ISSN)1521-4095

    104. [104]

      Ikeda, M.; Tanifuji, N.; Yamaguchi, H.; Irie, M.; Matsuda, K. Chem. Commun. 2007, 1355.

    105. [105]

      Whalley, A. C.; Steigerwald, M. L.; Guo, X. F.; Nuckolls, C. J. Am. Chem. Soc. 2007, 129, 12590.  doi: 10.1021/ja073127y

    106. [106]

      Jia, C.; Wang, J.; Yao, C.; Cao, Y.; Zhong, Y.; Liu, Z.; Liu, Z.; Guo, X. F. Angew. Chem., Int. Ed. Engl. 2013, 52, 8666.  doi: 10.1002/anie.201304301

    107. [107]

      Migliore, A.; Jia, C. C.; Xin, N.; Huang, S. Y.; Wang, J. Y.; Yang, Q.; Wang, S. P.; Chen, H. L.; Wang, D. M.; Feng, B. Y.; Liu, Z. R.; Zhang, G. Y.; Qu, D. H.; Tian, H.; Ratner, M. A.; Xu, H. Q.; Nitzan, A.; Guo, X. F. Science 2016, 352, 1443.  doi: 10.1126/science.aaf6298

    108. [108]

      Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424, 654.  doi: 10.1038/nature01797

    109. [109]

      Cui, Y.; Lieber, C. M. Science 2001, 291, 851.  doi: 10.1126/science.291.5505.851

    110. [110]

      Damle, P.; Rakshit, T.; Paulsson, M.; Datta, S. IEEE T. Nanotechnol. 2002, 1, 145.  doi: 10.1109/TNANO.2002.806825

    111. [111]

      Xu, B. Q.; Xiao, X. Y.; Yang, X. M.; Zang, L.; Tao, N. J. J. Am. Chem. Soc. 2005, 127, 2386.  doi: 10.1021/ja042385h

    112. [112]

      Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Nature 2009, 462, 1039.  doi: 10.1038/nature08639

    113. [113]

      Prins, F.; Barreiro, A.; Ruitenberg, J. W.; Seldenthuis, J. S.; Ali-aga-Alcalde, N.; Vandersypen, L. M.; van der Zant, H. S. Nano Lett. 2011, 11, 4607.  doi: 10.1021/nl202065x

    114. [114]

      Ohshiro, T.; Tsutsui, M.; Yokota, K.; Furuhashi, M.; Taniguchi, M.; Kawai, T. Nat. Nanotechnol. 2014, 9, 835.  doi: 10.1038/nnano.2014.193

    115. [115]

      Guan, J.; Jia, C.; Li, Y.; Liu, Z.; Wang, J.; Yang, Z.; Gu, C.; Su, D.; Houk, K. N.; Zhang, D.; Guo, X. F. Sci. Adv. 2018, 4, 2177.  doi: 10.1126/sciadv.aar2177

    116. [116]

      Bergren, A. J.; Zeer-Wanklyn, L.; Semple, M.; Pekas, N.; Szeto, B.; McCreery, R. L. J. Phys. Condens. Matter. 2016, 28, 094011.  doi: 10.1088/0953-8984/28/9/094011

    117. [117]

      McCreery, R. L.; Bergren, A.; Morteza-Najarian, A.; Sayed, S. Y.; Yan, H. Faraday Discuss 2014, 172, 9.  doi: 10.1039/C4FD00172A

    118. [118]

      Rincon-Garcia, L.; Evangeli, C.; Rubio-Bollinger, G.; Agrait, N. Chem. Soc. Rev. 2016, 45, 4285.  doi: 10.1039/C6CS00141F

    119. [119]

      Kim, Y.; Song, H. Appl. Spectrosc. Rev. 2016, 51, 603.  doi: 10.1080/05704928.2016.1166435

    120. [120]

      Xiang, D.; Sydoruk, V.; Vitusevich, S.; Petrychuk, M. V.; Offenhaeusser, A.; Kochelap, V. A.; Belyaev, A. E.; Mayer, D. Appl. Phys. Lett. 2015, 106, 063702-1.

  • 加载中
    1. [1]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    2. [2]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    3. [3]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    8. [8]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    19. [19]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    20. [20]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

Metrics
  • PDF Downloads(95)
  • Abstract views(3995)
  • HTML views(890)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return