New Progress in Molecular Electronics
- Corresponding author: Yu Xi, xi.yu@tju.edu.cn Zhu Yanying, yywlxzyy@163.com
Citation: Xu Xiaona, Han Bin, Yu Xi, Zhu Yanying. New Progress in Molecular Electronics[J]. Acta Chimica Sinica, ;2019, 77(6): 485-499. doi: 10.6023/A19010019
Feynman, R. Engineering and Science 1960, 23, 8.
Ratner, M. A.; Aviram, A. Chem. Phys. Lett. 1974, 29, 277.
doi: 10.1016/0009-2614(74)85031-1
Jiang, L.; Huang, G. F.; Li, H. X.; Li, X. F.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Prog. Chem. 2005, 17, 172(in Chinese).
doi: 10.3321/j.issn:1005-281X.2005.01.020
Ai, Y.; Zhang, H. L. Acta Phys-Chim. Sin. 2012, 28, 2237. (in Chinese).
doi: 10.3866/PKU.WHXB201209102
Zhou, C.; Reed, M. A.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science 1997, 278, 3.
Yang, W. R.; Jones, M. W.; Li, X.; Eggers, P. K.; Tao, N. J.; Gooding, J.; Paddon-Row, M. N. J. Phys. Chem. C 2008, 112, 9072.
doi: 10.1021/jp802328b
Vilan, A.; Aswal, D.; Cahen, D. Chem. Rev. 2017, 117, 4248.
doi: 10.1021/acs.chemrev.6b00595
Chen, S.; Liu, Y.; Chen, J. Chem. Soc. Rev. 2014, 43, 5372.
doi: 10.1039/C4CS00087K
Sun, L.; Diaz-Fernandez, Y. A.; Gschneidtner, T. A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Chem. Soc. Rev. 2014, 43, 7378.
doi: 10.1039/C4CS00143E
Kuo, C. T.; Su, L. C.; Chen, C. H. J. Am. Chem. Soc. 2014, 61, 101.
Ratner, M. Nature Nanotech. 2013, 8, 378.
doi: 10.1038/nnano.2013.110
Zimbovskaya, N. A.; Pederson, M. R. Phys. Rep. 2011, 509, 1.
doi: 10.1016/j.physrep.2011.08.002
Aradhya, S. V.; Venkataraman, L. Nature Nanotech. 2013, 8, 399.
doi: 10.1038/nnano.2013.91
Claridge, S. A.; Schwartz, J. J.; Weiss, P. S. ACS Nano 2011, 5, 693.
doi: 10.1021/nn103298x
Song, H.; Reed, M. A.; Lee, T. Adv. Mater. 2011, 23, 1583.
doi: 10.1002/adma.201004291
Chen, F.; Tao, N. J. Acc. Chem. Res. 2009, 42, 429.
doi: 10.1021/ar800199a
Heath, J. R. Annu. Rev. Mater. Res. 2009, 39, 1.
doi: 10.1146/annurev-matsci-082908-145401
Poulsen, K. M.; Bjornholm, T. Nature Nanotech. 2009, 4, 551.
doi: 10.1038/nnano.2009.176
McCreery, R. L.; Bergren, A. J. Adv. Mater. 2009, 21, 4303.
doi: 10.1002/adma.v21:43
Akkerman, H. B.; de Boer, B. J. Phys. Condens. Matter. 2008, 20, 013001.
doi: 10.1088/0953-8984/20/01/013001
Nitzan, A.; Ratner, M. A. Science 2003, 300, 1384.
doi: 10.1126/science.1081572
Su, T. A.; Neupane, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Nat. Rev. Mater. 2016, 1, 16002.
doi: 10.1038/natrevmats.2016.2
Zhang, X.; Li, T. Chin. Chem. Lett. 2017, 28, 2058.
doi: 10.1016/j.cclet.2017.09.008
Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318.
doi: 10.1021/acs.chemrev.5b00680
Cuevas, J. C.; Scheer, E. Molecular Electronics, 2nd ed., USA: World Scientific Publishing Co, 2017, pp. 1~826.
Li, J. C.; Wu, J. Z.; Zhou, C.; Gong, X. Acta Phys.-Chim. Sin. 2013, 29, 1123(in Chinese).
doi: 10.3866/PKU.WHXB201304014
Yang, Y.; Liu, J. Y.; Yan, R. W.; Wu, D. Y.; Tian, Z. Q. Chem. J. Chin. Univ. 2015, 36, 9(in Chinese).
Chen, F.; Hihath, J.; Huang, Z.; Li, X.; Tao, N. J. Annu. Rev. Phys. Chem. 2007, 58, 535.
doi: 10.1146/annurev.physchem.58.032806.104523
Xu, B. Q.; Tao, N. J. Science 2003, 301, 1221.
doi: 10.1126/science.1087481
Guo, S.; Hihath, J.; Diez-Perez, I.; Tao, N. J. J. Am. Chem. Soc. 2011, 133, 19189.
doi: 10.1021/ja2076857
Baldea, I. Phys. Rev. B 2012, 85, 9222.
Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. J. J. Am. Chem. Soc. 2006, 128, 15874.
doi: 10.1021/ja065864k
Hines, T.; Diez-Perez, I.; Nakamura, H.; Shimazaki, T.; Asai, Y.; Tao, N. J. J. Am. Chem. Soc. 2013, 135, 3319.
doi: 10.1021/ja3106434
Li, H.; Su, T. A.; Zhang, V.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. J. Am. Chem. Soc. 2015, 137, 5028.
doi: 10.1021/ja512523r
Dell, E. J.; Capozzi, B.; DuBay, K. H.; Berkelbach, T. C.; Moreno, J. R.; Reichman, D. R.; Venkataraman, L.; Campos, L. M. J. Am. Chem. Soc. 2013, 135, 11724.
doi: 10.1021/ja4055367
Wold, D. J.; Frisbie, C. D. J. Am. Chem. Soc. 2000, 122, 2970.
doi: 10.1021/ja994468h
Aradhya, S. V.; Frei, M.; Hybertsen, M. S.; Venkataraman, L. Nat. Mater. 2012, 11, 872.
doi: 10.1038/nmat3403
Nazin, G. V.; Wu, S. W.; Ho, W. PNAS 2005, 102, 8832.
doi: 10.1073/pnas.0501171102
Zhou, J.; Chen, F.; Xu, B. Q. J. Am. Chem. Soc. 2009, 131, 10439.
doi: 10.1021/ja900989a
Zhou, J.; Chen, G.; Xu, B. Q. J. Phys. Chem. C 2010, 114, 8587.
doi: 10.1021/jp101257y
Moreland, J.; Ekin, J. W. J. Appl. Phys. 1985, 58, 3888.
doi: 10.1063/1.335608
Muller, C. J.; van Ruitenbeek, J. M.; de Jongh, L. J. Phys. Rev. Lett. 1992, 69, 140.
doi: 10.1103/PhysRevLett.69.140
Tian, J. H.; Liu, B.; Li, X.; Yang, Z. L.; Ren, B.; Wu, S. T.; Tao, N. J.; Tian, Z. Q. J. Am. Chem. Soc. 2006, 128, 14748.
doi: 10.1021/ja0648615
Xiang, D.; Jeong, H.; Kim, D.; Lee, T.; Cheng, Y.; Wang, Q.; Mayer, D. Nano Lett. 2013, 13, 2809.
doi: 10.1021/nl401067x
Holmlin, R. E.; Ismagilov, R. F.; Haag, R.; Mujica, V.; Ratner, M. A.; Rampi, M. A.; Whitesides, G. M. Angew. Chem., Int. Ed. Engl. 2001, 40, 2316.
doi: 10.1002/1521-3773(20010618)40:12<2316::AID-ANIE2316>3.0.CO;2-#
Thuo, M. M.; Reus, W. F.; Nijhuis, C. A.; Barber, J. R.; Kim, C.; Schulz, M. D.; Whitesides, G. M. J. Am. Chem. Soc. 2011, 133, 2962.
doi: 10.1021/ja1090436
Nijhuis, C. A.; Reus, W. F.; Barber, J. R.; Dickey, M. D.; Whitesides, G. M. Nano Lett. 2010, 10, 3611.
doi: 10.1021/nl101918m
Chiechi, R. C.; Weiss, E. A.; Dickey, M. D.; Whitesides, G. M. Angew. Chem., Int. Ed. Engl. 2008, 47, 142.
doi: 10.1002/(ISSN)1521-3773
Senthil kumar, K.; Jiang, L.; Nijhuis, C. A. RSC Adv. 2017, 7, 14544.
doi: 10.1039/C6RA27280K
Walker, A. V.; Tighe, T. B.; Haynie, B. C.; Uppili, S.; Winograd, N.; Allara, D. L. J. Phys. Chem. B 2005, 109, 11263.
doi: 10.1021/jp0506484
Mahmoud, A. M.; Bergren, A. J.; Pekas, N.; McCreery, R. L. Adv. Funct. Mater. 2011, 21, 2273.
doi: 10.1002/adfm.v21.12
Zhu, Z.; Daniel, T. A.; Maitani, M.; Cabarcos, O. M.; Allara, D. L.; Winograd, N. J. Am. Chem. Soc. 2006, 128, 13710.
doi: 10.1021/ja060084x
Walker, A. V.; Tighe, T. B.; Cabarcos, O. M.; Reinard, M. D.; Haynie, B. C.; Uppili, S.; Winograd, N.; Allara, D. L. J. Am. Chem. Soc. 2004, 126, 3954.
doi: 10.1021/ja0395792
DeIonno, E.; Tseng, H. R.; Harvey, D. D.; Stoddart, J. F.; Heath, J. R. J. Phys. Chem. B 2006, 110, 7609.
Bonifas, A. P.; McCreery, R. L. Nat. Nanotechnol. 2010, 5, 612.
doi: 10.1038/nnano.2010.115
Honciuc, A.; Metzger, R. M.; Gong, A.; Spangler, C. W. J. Am. Chem. Soc. 2007, 129, 8310.
doi: 10.1021/ja068729g
Bonifas, A. P.; McCreery, R. L. Nano Lett. 2011, 11, 4725.
doi: 10.1021/nl202495k
Akkerman, H. B.; Blom, P. W. M.; de Leeuw, D. M.; de Boer, B. Nature 2006, 441, 69.
doi: 10.1038/nature04699
Katsouras, I.; Piliego, C.; Blom, P. W. M.; Leeuwa, D. M. Nanoscale 2013, 5, 9882.
doi: 10.1039/c3nr03183g
Puebla-Hellmann, G.; Venkatesan, K.; Mayor, M.; Lörtscher, E. Nature 2018, 559, 232.
doi: 10.1038/s41586-018-0275-z
Noy, G.; Ophir, A.; Selzer, Y. Angew. Chem., Int. Ed. Engl. 2010, 49, 5734.
doi: 10.1002/anie.v49:33
Rigaut, S. Dalton Trans. 2013, 42, 15859.
doi: 10.1039/c3dt51487k
Choi, S. H.; Kim, B.; Frisbie, C. D. Science 2008, 320, 1482.
doi: 10.1126/science.1156538
Wang, W.; Lee, T.; Reed, M. A. Phys. Rev. B 2003, 68, 035416-1.
Jeremy, B. K.; Beebe, M.; Frisbie, C. D.; Kushmerick, J. G. ACS Nano 2008, 2, 827.
doi: 10.1021/nn700424u
Vilan, A.; Cahen, D.; Kraisler, E. ACS Nano 2013, 7, 695.
doi: 10.1021/nn3049686
Huisman, E. H.; Guedon, C. M.; Wees, B. J.; van der Molen, S. J. Nano Lett. 2009, 9, 3909.
doi: 10.1021/nl9021094
Jia, C. C.; Guo, X. Chem. Soc. Rev. 2013, 42, 5642.
doi: 10.1039/c3cs35527f
Baldea, I.; Xie, Z.; Frisbie, C. D. Nanoscale 2015, 7, 10465.
doi: 10.1039/C5NR02225H
Widawsky, J. R.; Kamenetska, M.; Klare, J.; Nuckolls, C.; Stei-gerwald, M. L.; Hybertsen, M. S.; Venkataraman, L. Nanotechnology 2009, 20, 434009.
doi: 10.1088/0957-4484/20/43/434009
Lee, W.; Reddy, P. Nanotechnology 2011, 22, 485703.
doi: 10.1088/0957-4484/22/48/485703
Baldea, I. Nanoscale. 2013, 5, 9222.
doi: 10.1039/c3nr51290h
Chen, J.; Calvet, L. C.; Reed, M. A.; Carr, D. W.; Grubisha, D. S.; Bennett, D. W. Chem. Phys. Lett. 1999, 313, 741.
doi: 10.1016/S0009-2614(99)01060-X
Selzer, Y.; Cabassi, M. A.; Mayer, T. S.; Allara, D. L. J. Am. Chem. Soc. 2004, 126, 4052.
doi: 10.1021/ja039015y
Choi, S. H.; Risko, C.; Delgado, M. C. R.; Kim, B.; Bredas, J. L.; Frisbie, C.D. J. Am. Chem. Soc. 2010, 132, 4358.
doi: 10.1021/ja910547c
Hill, M. G.; Treadway, C. R.; Barton, J. K. Chem. Phys. 2002, 281, 409.
doi: 10.1016/S0301-0104(02)00447-0
Kelley, S. O.; Barton, J. K. Science 1999, 283, 375.
doi: 10.1126/science.283.5400.375
Eley, D. D.; Spivey, D. I. Trans. Faraday Soc. 1962, 58, 411.
doi: 10.1039/TF9625800411
Genereux, J. C.; Barton, J. K. Chem. Rev. 2010, 110, 1642.
doi: 10.1021/cr900228f
Xiang, L.; Palma, J. L.; Bruot, C.; Mujica, V.; Ratner, M. A.; Tao, N. J. Nat. Chem. 2015, 7, 221.
doi: 10.1038/nchem.2183
Bostick, C. D.; Mukhopadhyay, S.; Pecht, I.; Sheves, M.; Cahen, D.; Lederman, D. Rep. Prog. Phys. 2018, 81, 026601.
doi: 10.1088/1361-6633/aa85f2
Amdursky, N.; Marchak, D.; Sepunaru, L.; Pecht, I.; Sheves, M.; Cahen, D. Adv. Mater. 2014, 26, 7142.
doi: 10.1002/adma.v26.42
Andrews. D. Q.; Solomon, G. C.; Goldsmith, R. H.; Hansen, T.; Wasielewski, M. R.; Duyne, R. P.; Ratner, M. A. J. Am. Chem. Soc. 2008, 130, 17301.
doi: 10.1021/ja8044053
Hong, W. J.; Valkenier, H.; Meszaros, G.; Manrique, D. Z.; Mishchenko, A.; Putz, A.; Garcia, P. M.; Lambert, C. J.; Hummelen, J. C.; Wandlowski, T. Beilstein J. Nanotechnol. 2011, 2, 699.
doi: 10.3762/bjnano.2.76
Fracasso, D.; Valkenier, H.; Hummelen, J. C.; Solomon, G. C.; Chiechi, R. C. J. Am. Chem. Soc. 2011, 133, 9556
doi: 10.1021/ja202471m
Guedon, C. M.; Valkenier, H.; Markussen, T.; Thygesen, K. S.; Hummelen, J. C.; Molen, S. J. Nat. Nanotechnol. 2012, 7, 304..
Rabache, V.; Chaste, J.; Petit, P.; Della Rocca, M. L.; Martin, P.; Lacroix, J. C.; McCreery, R. L.; Lafarge, P. J. Am. Chem. Soc. 2013, 135, 10218.
doi: 10.1021/ja403577u
Manrique, D. Z.; Huang, C.; Baghernejad, M.; Zhao, X.; AlOwaedi, O. A.; Sadeghi, H.; Kaliginedi, V.; Hong, W. J.; Wandlowski, M.; Gulcur, T.; Bryce, M. R.; Lambert, C. J. Nat. Commun. 2015, 6, 6389.
doi: 10.1038/ncomms7389
Liu, X. S.; Sangtarash, S.; Reber, D.; Zhang, D.; Sadeghi, H.; Shi, J.; Xiao, Z.; Hong, W. J.; Lambert, C. J.; Liu, S. X. Angew. Chem., Int. Ed. Engl. 2017, 56, 173.
doi: 10.1002/anie.201609051
Zhang, P.; Chen, L. C.; Zhang, Z. Q.; Cao, J. J.; Tang, C.; Liu, J.; Duan, L. L.; Huo, Y.; Shao, X.; Hong, W. J.; Zhang, H. L. J. Am. Chem. Soc. 2018, 140, 6531.
doi: 10.1021/jacs.8b02825
Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X.; Tang, Y.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X.; Tan, Z.; Liu, J.; Yang, Y.; Shi, J.; Meszaros, G.; Chen, W.; Lambert, C.; Hong, W. J. Nat. Mater. 2019.
Liu, J.; Huang, X.; Wang, F.; Hong, W. J. Acc. Chem. Res. 2019, 52, 151.
doi: 10.1021/acs.accounts.8b00429
Dong, H.; Deng, N.; Chen, P. Y. World Science and Technology Research and Development 2005, 27, 1(in Chinese).
Dhirani, A.; Lin, P. H.; Sionnest, P. G.; Zehner, R. W.; Sita, L. R. J. Chem. Phys. 1997, 106, 6.
Metzger, R. M.; Xu, T.; Peterson, I. R. J. Phys. Chem. B 2001, 105, 7280.
doi: 10.1021/jp011084g
Diez-Perez, I.; Hihath, J.; Lee, Y.; Yu, L.; Adamska, L.; Kozhushner, M. A.; Oleynik, I. I.; Tao, N. J. Nat. Chem. 2009, 1, 635.
doi: 10.1038/nchem.392
Kushmerick, J. G.; Whitaker, C. M.; Pollack, S. K.; T Schull, . L.; Shashidhar, R. Nat. Nanotechnol. 2004, 15, S489.
doi: 10.1088/0957-4484/15/7/058
Wang, K.; Zhou, J.; Hamill, J. M.; Xu, B. Q. J. Chem. Phys. 2014, 141, 054712.
doi: 10.1063/1.4891862
Batra, A.; Darancet, P.; Chen, Q.; Meisner, J. S.; Widawsky, J. R.; Neaton, J. B.; Nuckolls, C.; Venkataraman, L. Nano Lett. 2013, 13, 6233.
doi: 10.1021/nl403698m
Nijhuis, C. A.; Reus, W. F.; Whitesides, G. M. J. Am. Chem. Soc. 2010, 132, 18386.
doi: 10.1021/ja108311j
Nijhuis, C. A.; Reus, W. F.; Siegel, A. C.; Whitesides, G. M. J. Am. Chem. Soc. 2011, 133, 15397.
doi: 10.1021/ja201223n
Chen, X.; Roemer, M.; Yuan, L.; Du, W.; Thompson, D.; Del Barco, E.; Nijhuis, C. A. Nat. Nanotechnol. 2017, 12, 797.
doi: 10.1038/nnano.2017.110
Katsonis, N.; Kudernac, T.; Walko, M.; Molen, S. J.; Wees, B. J.; Feringa, B. L. Adv. Mater. 2006, 18, 1397.
doi: 10.1002/(ISSN)1521-4095
Ikeda, M.; Tanifuji, N.; Yamaguchi, H.; Irie, M.; Matsuda, K. Chem. Commun. 2007, 1355.
Whalley, A. C.; Steigerwald, M. L.; Guo, X. F.; Nuckolls, C. J. Am. Chem. Soc. 2007, 129, 12590.
doi: 10.1021/ja073127y
Jia, C.; Wang, J.; Yao, C.; Cao, Y.; Zhong, Y.; Liu, Z.; Liu, Z.; Guo, X. F. Angew. Chem., Int. Ed. Engl. 2013, 52, 8666.
doi: 10.1002/anie.201304301
Migliore, A.; Jia, C. C.; Xin, N.; Huang, S. Y.; Wang, J. Y.; Yang, Q.; Wang, S. P.; Chen, H. L.; Wang, D. M.; Feng, B. Y.; Liu, Z. R.; Zhang, G. Y.; Qu, D. H.; Tian, H.; Ratner, M. A.; Xu, H. Q.; Nitzan, A.; Guo, X. F. Science 2016, 352, 1443.
doi: 10.1126/science.aaf6298
Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424, 654.
doi: 10.1038/nature01797
Cui, Y.; Lieber, C. M. Science 2001, 291, 851.
doi: 10.1126/science.291.5505.851
Damle, P.; Rakshit, T.; Paulsson, M.; Datta, S. IEEE T. Nanotechnol. 2002, 1, 145.
doi: 10.1109/TNANO.2002.806825
Xu, B. Q.; Xiao, X. Y.; Yang, X. M.; Zang, L.; Tao, N. J. J. Am. Chem. Soc. 2005, 127, 2386.
doi: 10.1021/ja042385h
Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Nature 2009, 462, 1039.
doi: 10.1038/nature08639
Prins, F.; Barreiro, A.; Ruitenberg, J. W.; Seldenthuis, J. S.; Ali-aga-Alcalde, N.; Vandersypen, L. M.; van der Zant, H. S. Nano Lett. 2011, 11, 4607.
doi: 10.1021/nl202065x
Ohshiro, T.; Tsutsui, M.; Yokota, K.; Furuhashi, M.; Taniguchi, M.; Kawai, T. Nat. Nanotechnol. 2014, 9, 835.
doi: 10.1038/nnano.2014.193
Guan, J.; Jia, C.; Li, Y.; Liu, Z.; Wang, J.; Yang, Z.; Gu, C.; Su, D.; Houk, K. N.; Zhang, D.; Guo, X. F. Sci. Adv. 2018, 4, 2177.
doi: 10.1126/sciadv.aar2177
Bergren, A. J.; Zeer-Wanklyn, L.; Semple, M.; Pekas, N.; Szeto, B.; McCreery, R. L. J. Phys. Condens. Matter. 2016, 28, 094011.
doi: 10.1088/0953-8984/28/9/094011
McCreery, R. L.; Bergren, A.; Morteza-Najarian, A.; Sayed, S. Y.; Yan, H. Faraday Discuss 2014, 172, 9.
doi: 10.1039/C4FD00172A
Rincon-Garcia, L.; Evangeli, C.; Rubio-Bollinger, G.; Agrait, N. Chem. Soc. Rev. 2016, 45, 4285.
doi: 10.1039/C6CS00141F
Kim, Y.; Song, H. Appl. Spectrosc. Rev. 2016, 51, 603.
doi: 10.1080/05704928.2016.1166435
Xiang, D.; Sydoruk, V.; Vitusevich, S.; Petrychuk, M. V.; Offenhaeusser, A.; Kochelap, V. A.; Belyaev, A. E.; Mayer, D. Appl. Phys. Lett. 2015, 106, 063702-1.
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
Limin Shao , Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
Jiantao Zai , Hongjin Chen , Xiao Wei , Li Zhang , Li Ma , Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023