Citation: Cao Ai-Hua, Wu Bo, Gan Li-Hua. Pc-carbon:A Possible Superhard Monoclinic Carbon Allotrope[J]. Acta Chimica Sinica, ;2019, 77(5): 455-460. doi: 10.6023/A19010017 shu

Pc-carbon:A Possible Superhard Monoclinic Carbon Allotrope

  • Corresponding author: Gan Li-Hua, ganlh@swu.edu.cn
  • Received Date: 9 January 2019
    Available Online: 1 May 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 51472208, 51772300)the National Natural Science Foundation of China 51772300the National Natural Science Foundation of China 51472208

Figures(7)

  • In this paper, we predicted a superhard carbon phase (Pc-carbon) by using CALYPSO software. The crystal structure belongs to monoclinic system with the space group Pc. We have studied the electronic and mechanical properties of Pc-carbon by first principles calculations. The calculated total energy per atom of Pc-carbon have a minimum value of -8.08 eV, confirming that the optimized structure is stable. And the minimum total energy per atom of Pc-carbon is higher than diamond and graphite, suggesting that the Pc-carbon should be thermodynamically metastable comparing diamond and graphite. There are no imaginary frequency throughout the entire Brillouin zone in the phonon dispersion, confirming the dynamical stability of Pc-carbon up to 100 GPa. The elastic constants of Pc-carbon follow the Born mechanical stability criteria, demonstrating the mechanical stability of Pc-carbon. The calculated B/G value and Poisson's ratio show that Pc-carbon is brittle. The calculated Vickers hardness value of Pc-carbon is 87.6 GPa, which is much larger than the minimal value for a superhard materials (40 GPa), indicating Pc-carbon is a potential superhard material. The Vickers hardness of Pc-carbon is less than that of diamond and M-carbon, but is comparable to that of bct-C4 and Ibam-C. In addition, the ideal tensile and shear strengths of Pc-carbon (65.8 and 56.5 GPa) are comparable to those of c-BN (55.3 and 58.3 GPa), suggesting that Pc-carbon may have similar tensile and shear resistance to c-BN. The elastic anisotropy index AU is 0.35, indicating that Pc-carbon is elastic anisotropic; the fractional anisotropy ratio of bulk modulus AB and shear modulus AG are 0.010 and 0.032, suggesting that the bulk modulus and shear modulus of Pc-carbon are all elastic anisotropic. The hydrostatic calculations of Pc-carbon indicate that Pc-carbon have excellent incompressibility as the pressure is increased up to 100 GPa. And Pc-carbon is an ultra-incompressible material like other carbon allotropes. The calculated band gap of Pc-carbon is estimated to be 0.99 eV, indicating that Pc-carbon is an indirect band gap semiconductor. The PDOS of Pc-carbon reflects significant sp3 hybridization between atomic orbitals, which leads to the superhard properties of Pc-carbon. Therefore, Pc-carbon is a potential superhard semiconductor material.
  • 加载中
    1. [1]

      Hanfland, M.; Beister, H.; Syassen, K. Phys. Rev. B 1989, 39, 12598.  doi: 10.1103/PhysRevB.39.12598

    2. [2]

      Bundy, F. P.; Bassett, W. A.; Weathers, M. S.; Hemley, R. J.; Mao, H. K.; Goncharov, A. F. Carbon 1996, 34, 141.  doi: 10.1016/0008-6223(96)00170-4

    3. [3]

      Kroto, H. W.; Heath, J. R.; O'brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.  doi: 10.1038/318162a0

    4. [4]

      Iijima, S. Nature 1991, 354, 56.  doi: 10.1038/354056a0

    5. [5]

      Li, Q.; Ma, Y. M.; Oganov, A. R.; Wang, H. B.; Wang, H.; Xu, Y.; Cui, T.; Mao, H. K.; Zou, G. Phys. Rev. Lett. 2009, 102, 175506.  doi: 10.1103/PhysRevLett.102.175506

    6. [6]

      Mao, W. L.; Mao, H.; Eng, P. J.; Trainor, T. P.; Newville, M.; Kao, C.; Heinz, D. L.; Shu, J.; Meng, Y.; Hemley, R. J. Science 2003, 302, 425.  doi: 10.1126/science.1089713

    7. [7]

      Umemoto, K.; Wentzcovitch, R. M.; Saito, S.; Miyake, T. Phys. Rev. Lett. 2010, 104, 125504.  doi: 10.1103/PhysRevLett.104.125504

    8. [8]

      Sheng, X. L.; Yan, Q. B.; Ye, F.; Zheng, Q. R.; Su, G. Phys. Rev. Lett. 2011, 106, 155703.  doi: 10.1103/PhysRevLett.106.155703

    9. [9]

      Wang, J. T.; Chen, C. F.; Kawazoe, Y. Phys. Rev. Lett. 2011, 106, 075501.  doi: 10.1103/PhysRevLett.106.075501

    10. [10]

      Wang, J. T.; Chen, C. F.; Kawazoe, Y. Phys. Rev. B 2012, 85, 033410.
       

    11. [11]

      Wei, Q.; Zhang, M. G.; Yan, H. Y.; Lin, Z. Z.; Zhu, X. M. EPL 2014, 107, 27007.  doi: 10.1209/0295-5075/107/27007

    12. [12]

      Cao, A. H.; Zhao, W. J.; Zhou, Q. Y.; Liu, S. L.; Gan, L. H. Chem. Phys. Lett. 2019, 714, 119.

    13. [13]

      Eberhart, R.; Kennedy, J. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Japan, 1995, p. 39.

    14. [14]

      Wang, Y. C.; Lv, J.; Zhu, L.; Ma, Y. M. Comput. Phys. Commun. 2012, 183, 2063.  doi: 10.1016/j.cpc.2012.05.008

    15. [15]

      Wang, H.; Wang, Y. C.; Lv, J.; Li, Q.; Zhang, L. J.; Ma, Y. M. Comput. Mater. Sci. 2016, 112, 406.  doi: 10.1016/j.commatsci.2015.09.037

    16. [16]

      Shi, S. Q; Gao, J.; Liu, Y.; Zhao, Y.; Wu, Q.; Ju, W. W.; Ouyang, C. Y.; Xiao, R. J. Chin. Phys. B 2016, 25, 018212.  doi: 10.1088/1674-1056/25/1/018212

    17. [17]

      Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.  doi: 10.1103/PhysRev.140.A1133

    18. [18]

      Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864.  doi: 10.1103/PhysRev.136.B864

    19. [19]

      Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169.  doi: 10.1103/PhysRevB.54.11169

    20. [20]

      Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys. Condens. Matter. 2002, 14, 2717.  doi: 10.1088/0953-8984/14/11/301

    21. [21]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  doi: 10.1103/PhysRevLett.77.3865

    22. [22]

      Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.

    23. [23]

      Kittel, C. Introduction to Solid State Physics, John Wiley & Sons, New York, 1996.

    24. [24]

      Wu, Z. J.; Zhao, E. J.; Xiang, H. P.; Hao, X. F.; Liu, X. J.; Meng, J. Phys. Rev. B 2007, 76, 054115.  doi: 10.1103/PhysRevB.76.054115

    25. [25]

      Hill, R. Proc. Phys. Soc. 1952, 65, 349.  doi: 10.1088/0370-1298/65/5/307

    26. [26]

      Pugh, S. F. Philos. Mag. 1954, 45, 833.

    27. [27]

      Frantsevich, I. N.; Voronov, F. F.; Bokuta, S. A. Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, Naukova Dumka, Kiev, 1983, pp. 60~180.

    28. [28]

      Gao, F. M.; He, J. L.; Wu, E. D.; Liu, S. M.; Yu, D. L.; Li, D. C.; Zhang, S. Y.; Tian, Y. J. Phys. Rev. Lett. 2003, 91, 015502.  doi: 10.1103/PhysRevLett.91.015502

    29. [29]

      Andrievski, R. A.; Refract, I, J. Met. Hard Mater. 2001, 19, 447.  doi: 10.1016/S0263-4368(01)00023-3

    30. [30]

      Ranganathan, S. I.; Ostoja-Starzewski, M. Phys. Rev. Lett. 2008, 101, 055504.  doi: 10.1103/PhysRevLett.101.055504

    31. [31]

      Chung, D. H.; Buessem, W. R. J. Appl. Phys. 1967, 38, 2010.  doi: 10.1063/1.1709819

    32. [32]

      Nye, J. F. Physical Properties of Crystals:Their Representation by Tensors and Matrices, Oxford University Press, 1985.

    33. [33]

      Zhang, R. F.; Veprek, S. Phys. Rev. B 2008, 77, 172103.  doi: 10.1103/PhysRevB.77.172103

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(17)
  • Abstract views(1592)
  • HTML views(443)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return