Citation: Li Huabo, Cui Yuanyuan, Liu Yixin, Dai Wei-Lin. Promotional Effect of Cr on Cu/SiO2 Catalyst for the Production of Methanol from Carbonate Hydrogenation[J]. Acta Chimica Sinica, ;2019, 77(4): 371-378. doi: 10.6023/A19010012 shu

Promotional Effect of Cr on Cu/SiO2 Catalyst for the Production of Methanol from Carbonate Hydrogenation

  • Corresponding author: Dai Wei-Lin, wldai@fudan.edu.cn
  • Received Date: 5 January 2019
    Available Online: 7 April 2019

    Fund Project: the Science and Technology Commission of Shanghai Municipality 08DZ2270500the National Natural Science Foundation of China 21373054Project supported by the National Natural Science Foundation of China (No. 21373054) and the Science and Technology Commission of Shanghai Municipality (No. 08DZ2270500)

Figures(7)

  • Recently, it has been widely reported that CO2 was utilized to produce valuable chemical feedstock with copper/zinc and metal oxide based catalysts, yet harsh conditions (high pressure and high temperature, etc.) are still essential for the activity and selectivity. Compared with the harsh conditions required in the direct conversion of CO2 to achieve high selectivity and activity, mild conditions in the indirect conversion of CO2 through the carbonate intermediate provides an alternative. Since CO2 can be easily transferred to carbonate under mild and even atmospheric pressure of CO2 in many reports, hydrogenation of carbonates to methanol at ambient condition presents an attractive strategy for the indirect conversion of CO2 with higher catalytic activity. In our previous work, we have reported that Cu/SiO2 catalyst achieved satisfying performance for the hydrogenation of diethyl carbonate with poor stability at long term running due to the agglomeration of active metal. Herein, we present that the catalytic activity and stability of the catalysts in the hydrogenation of carbonates could be efficiently improved by the addition of Cr. In this research, various Cr-promoted Crx-Cu/SiO2 catalysts were synthesized through an ammonia evaporation method. The effect of added Cr on the catalytic performance was investigated by the hydrogenation of diethyl carbonate (DEC) as a probe reaction system. The results showed that the Crx-Cu/SiO2 catalyst with 3 wt% Cr performed the preferable activity. Under the reaction conditions of temperature of 503 K, hydrogen pressure of 2.5 MPa and liquid hourly space velocity (LHSV) of 1.0 h-1, the conversion of DEC could be 99%, while the selectivity of product methanol (86.2%) and space-time yields (STY) of methanol (5.6 mmolMeOH·gcat-1·h-1) were enhanced significantly. The physicochemical properties of Crx-Cu/SiO2 catalysts were characterized by X-ray diffraction (XRD), N2 physical adsorption and desorption, transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR) and in-situ diffuse reflection infrared Fourier transform spectroscopy (In-situ DRIFTS). The results revealed that the dispersion of active copper species was significantly improved. The copper chromite species formed by the interaction of copper and chromium could optimize the distribution of Cu(0) and Cu(Ⅰ) and regulate adsorption construction of reactant, efficiently improving the catalytic performance and stability for the hydrogenation of diethyl carbonate to methanol.
  • 加载中
    1. [1]

    2. [2]

      Behrens, M.; Studt, F.; Kasatkin, I.; Kuhl, S.; Havecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.-L.; Tovar, M.; Fischer, R. W.; Norskov, J. K.; Schlogl, R. Science 2012, 336, 893.  doi: 10.1126/science.1219831

    3. [3]

      (a) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L.; Milstein, D. Nat. Chem. 2011, 3, 609;(b) Balaraman, E.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 11702;(c) Han, Z. B.; Rong, L. C.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. L. Angew. Chem., Int. Ed. 2012, 51, 13041.

    4. [4]

      (a) Chen, X.; Cui, Y. Y.; Wen, C.; Wang, B.; Dai, W.-L. Chem. Commun. 2015, 51, 13776;(b) Lian, C.; Ren, F. M.; Liu, Y. X.; Zhao, G. F.; Ji, Y. J.; Rong, H. P.; Jia, W.; Ma, L.; Lu, H. Y.; Wang, D. S.; Li, Y. D. Chem. Commun. 2015, 51, 1252;(c) Tamura, M.; Kitanaka, T.; Nakagawa, Y.; Tomishige, K. ACS Catal. 2016, 6, 376;(d) Cui, Y. Y.; Dai, W.-L. Catal. Sci. Technol. 2016, 6, 7752.

    5. [5]

      (a) Wen, C.; Cui, Y. Y.; Dai, W.-L; Xie, S. H.; Fan, K. N. Chem. Commun. 2013, 49, 5195;(b) Ye, R.-P.; Lin, L.; Li, Q. H.; Zhou, Z. F.; Wang, T. T.; Russell, C.; Adidharma, H.; Xu, Z. H; Yao, Y.-G.; Fan, M. H. Catal. Sci. Technol. 2018, 8, 3428.

    6. [6]

    7. [7]

      Yin, A. Y.; Wen, C.; Guo, X. Y.; Dai, W.-L.; Fan, K. N. J. Catal. 2011, 280, 77.  doi: 10.1016/j.jcat.2011.03.006

    8. [8]

      (a) Kim, N. D.; Oh, S.; Joo, J. B; Jung, K.; Yi, J. H. Top Catal. 2010, 53, 517;(b) Xiao, Z. H.; Ma, Z. Q.; Wang, X. K.; Williams, C.; Liang, C. H. Ind. Eng. Chem. Res. 2011, 50, 2031.

    9. [9]

      Tsoncheva, T.; Järn, M.; Paneva, D.; Dimitrov, M.; Mitov, I. Micropor. Mesopor. Mat. 2011, 137, 56.  doi: 10.1016/j.micromeso.2010.08.021

    10. [10]

      Dragoi, B.; Ungureanu, A.; Chirieac, A.; Hulea, V.; Royer, S.; Dumitriu, E. Catal. Sci. Technol. 2013, 3, 2319.  doi: 10.1039/c3cy00198a

    11. [11]

      Wang, J. Q.; Chernavskii, P.; Khodakov, A.; Wang, Y. J. Catal. 2012, 286, 51.  doi: 10.1016/j.jcat.2011.10.012

    12. [12]

      Yin, A. Y.; Guo, X. Y.; Dai, W. -L.; Fan, K. N. Acta Chim. Sinica 2009, 67, 1731.
       

    13. [13]

      Yin, A. Y.; Guo, X. Y.; Dai, W.-L.; Fan, K. N. J. Phys. Chem. C 2009, 113, 11003.

    14. [14]

      (a) Wang, Y.; Shen, Y. L.; Zhao, Y. J.; Lv, J.; Wang, S. P.; Ma, X. B. ACS Catal. 2015, 5, 6200;(b) Zhao, Y. J.; Li, S. M.; Wang, Y.; Shan, B.; Zhang, J.; Wang, S. P.; Ma, X. B. Chem. Eng. J. 2017, 313, 759.

    15. [15]

      Guo, X. L.; Chen, X.; Su, D. S.; Liang, C. H. Acta Chim. Sinica 2018, 76, 22.  doi: 10.3866/PKU.WHXB201706302
       

    16. [16]

      Liang, C. H.; Ma, Z. Q.; Ding, L.; Qiu, J. S. Catal. Lett. 2009, 130, 169.  doi: 10.1007/s10562-009-9844-y

    17. [17]

      Zheng, X. L.; Lin, H. Q.; Zheng, J. W.; Duan, X. P.; Yuan, Y. Z. ACS Catal. 2013, 3, 2738.  doi: 10.1021/cs400574v

    18. [18]

      Zhang, M. H.; Li, G. M.; Jiang, H. X.; Zhang, J. Y. Catal. Lett. 2011, 141, 1104.  doi: 10.1007/s10562-011-0635-x

    19. [19]

      Yurieva, T. M.; Plyasova, L. M.; Makarova, O. Y.; Krieger, T. A. J. Mol. Catal. A:Chem. 1996, 113, 455.  doi: 10.1016/S1381-1169(96)00272-5

    20. [20]

      Khassin, A. A.; Kustova, G. N.; Jobic, H.; Yurieva, T. M.; Chesalov, Y. A.; Filonenko, G. A.; Plyasova, L. M.; Parmon, V. N. Phys. Chem. Chem. Phys. 2009, 11, 6090.  doi: 10.1039/b821381j

    21. [21]

      Xiao, Z. H.; Wang, X. K.; Xiu, J. H.; Wang, Y. M.; Williams, C.; Liang, C. H. Catal. Today 2014, 234, 200.  doi: 10.1016/j.cattod.2014.02.025

    22. [22]

      (a) Choi, K.; Vannice, M. J. Catal. 1991, 131, 22;(b) Fisher, I. A.; Bell, A. T. J. Catal. 1998, 178, 153;(c) Zhu, S. H.; Gao, X. Q.; Zhu, Y. L.; Fan, W. B.; Wang, J. G.; Li, Y. W. Catal. Sci. Technol. 2015, 5, 1169.

    23. [23]

      Ge, X.; Zou, H.; Wang, J.; Shen, J. Y. React. Kinet. Catal. Lett. 2005, 85, 253.  doi: 10.1007/s11144-005-0268-4

    24. [24]

      Boccuzzi, F.; Chiorino, A.; Tsubota, S.; Haruta, M. J. Phys. Chem. 1996, 100, 3625.  doi: 10.1021/jp952259n

    25. [25]

      (a) Gong, J. L.; Yue, H. R.; Zhao, Y. J.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S. P.; Ma, X. B. J. Am. Chem. Soc. 2012, 134, 13922;(b) Yue, H. R.; Zhao, Y. J.; Ma, X. B.; Gong, J. L. Chem. Soc. Rev. 2012, 41, 4218;(c) Zheng, J. W.; Zhou, J. F.; Lin, H. Q.; Duan, X. P.; Williams, C.; Yuan, Y. Z. J. Phys. Chem. C 2015, 119, 13758.

    26. [26]

      Garcilaso, V.; Barrientos, J.; Bobadilla, L. F.; Laguna, O. H.; Boutonnet, M.; Centeno, M. A.; Odriozola, J. A. Renew. Energ. 2019, 132, 1141.  doi: 10.1016/j.renene.2018.08.080

    27. [27]

      Bechara, R.; Wrobel, G.; Daage, M.; Bonnelle, J. P. Appl. Catal. 1985, 16, 15.  doi: 10.1016/S0166-9834(00)84066-X

    28. [28]

      He, Z.; Lin, H. Q.; He, P.; Yuan, Y. Z. J. Catal. 2011, 277, 54.  doi: 10.1016/j.jcat.2010.10.010

    29. [29]

      Zhou, G. B.; Tan, X. H.; Dou, R. F.; Pei, Y.; Fan, K. N.; Qiao, M. H.; Sun, B.; Zong, B. N. Sci. China:Chem. 2014, 44, 121.
       

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    12. [12]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    13. [13]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    14. [14]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    18. [18]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    19. [19]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    20. [20]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

Metrics
  • PDF Downloads(9)
  • Abstract views(1429)
  • HTML views(188)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return