Citation: Liu Shengwei, Zhao Jianjun, Xu Yiming. Larger Adsorption Effect of Fluoride than Phosphate on Phenol Degradation over the Irradiated Anatase TiO2 and Pt/TiO2[J]. Acta Chimica Sinica, ;2019, 77(4): 351-357. doi: 10.6023/A19010009 shu

Larger Adsorption Effect of Fluoride than Phosphate on Phenol Degradation over the Irradiated Anatase TiO2 and Pt/TiO2

  • Corresponding author: Xu Yiming, xuym@zju.edu.cn
  • Received Date: 4 January 2019
    Available Online: 5 April 2019

    Fund Project: the Funds for Creative Research Group of NSFC 21621005Project supported by the Funds for Creative Research Group of NSFC (No. 21621005)

Figures(6)

  • It is known that fluoride and phosphate in aqueous solution can accelerate the photocatalytic degradation of phenol over anatase or P25 TiO2. But the mechanism still remains under debate. In this work, an anion-free anatase TiO2 is prepared, followed by deposition with 0.52 wt% Pt (Pt/TiO2). Reaction was performed in aqueous solution at initial pH 5.2, where 99% of anions were in the form of F- or H2PO4-. On the addition of 0.1~30 mmol/L anions, the rate constants of phenol degradation (kobs) were all increased, confirming the positive effect of fluoride and phosphate, respectively. Interestingly, there was a linear relationship between the increase of kobs and the amounts of anion adsorption, the slope of which became larger in the order of fluoride>phosphate, and Pt/TiO2>TiO2. These observations indicate that the positive effect of anions originates from the adsorbed anions on solid, and that fluoride was more active than phosphate. A (photo)electrochemical measurement showed that fluoride and phosphate were negative and positive, respectively, to O2 reduction, but they were all beneficial to phenol oxidation. Furthermore, in the presence of fluoride and phosphate, the flat band potentials of TiO2 were shifted by -159 and 89 mV, respectively. The former favors orbital overlapping of phenol with TiO2 valence band, and the latter favors orbital overlapping of O2 with TiO2 conduction band, all of which promotes the interfacial charge transfers. Since inorganic anions are widely present, this result would benefit the mechanism study of a semiconductor photocatalyis and its application. As a reference, pure anatase was prepared from the hydrolysis of tetrabutyl titanate, followed by calcination in air at 400℃ for 2 h. The solid was then deposited with Pt, produced in situ from the photocatalytic reduction of H2PtCl6 in the presence of methanol. Solid was characterized with X-ray diffraction, N2 adsorption, Raman, and X-ray photoelectron spectroscopy. After Pt deposition, anatase phase remained unchanged, but the solid pores were blocked by a mixture of Pt and PtO2. Photoreactions were performed at room temperature under UV light at wavelengths equal to and longer than 320 nm. Organic compounds and inorganic anions were quantitatively analyzed with a high performance liquid and ionic chromatography, respectively. (Photo)electrochemical measurement was performed in a three-electrode compartment, where a Pt gauze was used as counter electrode, and a AgCl/Ag as reference electrode.
  • 加载中
    1. [1]

      Wu, J. J.; Ji, Z. Y.; Shen, X. P.; Miao, X. L.; Xu, K. Q. Acta Chim. Sinica 2017, 75, 1207.
       

    2. [2]

      Du, P. J.; Su, T. M.; Luo, X.; Zhou, X. T.; Qin, Z. Z.; Ji, H. B.; Chen, J. H. Chin. J. Chem. 2018, 36, 538.  doi: 10.1002/cjoc.v36.6

    3. [3]

      Chai, Y. Y.; Liu, Q. Q.; Zhang, L.; Ren, J.; Dai, W. L. Chin. J. Chem. 2017, 35, 173.  doi: 10.1002/cjoc.v35.2

    4. [4]

      Zhang, F. L.; Duan, F.; Ding, Z. G.; Chen, M. Q. Chin. J. Chem. 2017, 35, 226.  doi: 10.1002/cjoc.v35.2

    5. [5]

      Hoffmann, M.; Martin, S.; Choi, W.; W. Bahnemann, D. W. Chem. Rev. 1995, 95, 69.  doi: 10.1021/cr00033a004

    6. [6]

      Tachikawa, T.; Fujitsuka, M.; Majima, T. J. Phys. Chem. C 2007, 111, 5259.

    7. [7]

      Zielińska-Jurek, A.; Zaleska, A. Catal. Today 2014, 230, 104.  doi: 10.1016/j.cattod.2013.11.044

    8. [8]

      Chen, K. T.; Lu, C. S.; Chang, T. H.; Lai, Y. Y.; Chang, T. H.; Wu, C. W.; Chen, C. C. J. Hazard. Mater. 2010, 174, 598.  doi: 10.1016/j.jhazmat.2009.09.094

    9. [9]

      Chiang, K.; Amal, R.; Tran, T. J. Mol. Catal. A:Chem. 2003, 193, 285.  doi: 10.1016/S1381-1169(02)00512-5

    10. [10]

      Kumar, A.; Mathur, N. J. Colloid Interf. Sci. 2006, 300, 244.  doi: 10.1016/j.jcis.2006.03.046

    11. [11]

      Lv, K. L.; Li, X. F.; Deng, K. J.; Sun, J.; Li, X. H.; Li, M. Appl.Catal. B:Environ 2010, 95, 383.  doi: 10.1016/j.apcatb.2010.01.017

    12. [12]

      Minero, C.; Mariella, G.; Maurino, V.; Pelizzetti, E. Langmuir 2000, 16, 2632.  doi: 10.1021/la9903301

    13. [13]

      Minero, C.; Mariella, G.; Maurino, V.; Vione, D.; Pelizzetti, E. Langmuir 2000, 16, 8964.  doi: 10.1021/la0005863

    14. [14]

      Vohra, M. S.; Kim, S.; Choi, W. J. Photochem. Photobiol., A:Chem. 2003, 160, 55.  doi: 10.1016/S1010-6030(03)00221-1

    15. [15]

      Park, H.; Choi, W. J. Phys. Chem. B 2004, 108, 4086.  doi: 10.1021/jp036735i

    16. [16]

      Yu, J. C.; Zhang, L. Z.; Zheng, Z.; Zhao, J. C. Chem. Mater. 2003, 15, 2280.  doi: 10.1021/cm0340781

    17. [17]

      Zhao, D.; Chen, C. C.; Wang, Y. F.; Ji, H. W.; Ma, W. H.; Zang, L.; Zhao, J. C. J. Phys. Chem. C 2008, 112, 5993.  doi: 10.1021/jp712049c

    18. [18]

      Zhang, X.; Xiong, X. Q.; Xu, Y. M. RSC Adv. 2016, 6, 61830.  doi: 10.1039/C6RA10291C

    19. [19]

      Xiong, X. Q.; Xu, Y. M. J. Phys. Chem. C 2016, 120, 3906.

    20. [20]

      Xiong, X. Q.; Zhang, X.; Xu, Y. M. J. Phys. Chem. C 2016, 120, 25689.  doi: 10.1021/acs.jpcc.6b07951

    21. [21]

      Mathpal, M. C.; Tripathi, A. K.; Singh, M. K; Gairola, S. P.; Pandey, S. N.; Agarwal, A. Chem. Phys. Lett. 2013, 555, 182.  doi: 10.1016/j.cplett.2012.10.082

    22. [22]

      Choi, H. C.; Jung, Y. M.; Kim, S. B. Vib. Spectrosc. 2005, 37, 33.  doi: 10.1016/j.vibspec.2004.05.006

    23. [23]

      Li, F. B.; Li, X. Z. Chemosphere 2002, 48, 1103.  doi: 10.1016/S0045-6535(02)00201-1

    24. [24]

      Nie, L. H.; Yu, J. G.; Li, X. Y.; Cheng, B.; Liu, G.; Jaroniec, M. Environ. Sci. Technol. 2013, 47, 2777.  doi: 10.1021/es3045949

    25. [25]

      Yu, J. G.; Qi, L. F.; Jaroniec, M. J. Phys. Chem. C 2010, 114, 13118.  doi: 10.1021/jp104488b

    26. [26]

      Vorontsov, A. V.; Savinov, E. N.; Zhensheng, J. J. Photochem. Photobiol., A:Chem. 1999, 125, 113.  doi: 10.1016/S1010-6030(99)00073-8

    27. [27]

      Cao, Y.; Jing, L.; Shi, X.; Luan, Y.; Durrant, J. R.; Tang, J.; Fu, H. Phys. Chem. Chem. Phys. 2012, 14, 8530.  doi: 10.1039/c2cp41167a

    28. [28]

      Minella, M.; Maurino, V.; Minero, C.; Pelizzetti, E. J. Nanosci. Nanotechnol. 2015, 15, 3348.  doi: 10.1166/jnn.2015.10206

    29. [29]

      Nelson, B. P.; Candal, R.; Corn, R. M.; Anderson, M. A. Langmuir 2000, 16, 6094.  doi: 10.1021/la9911584

    30. [30]

      Li, S. F.; Ye, G. L.; Chen, G. Q. J. Phys. Chem. C 2009, 113, 4031.

    31. [31]

      Kim, J.; Lee, C. W.; Choi, W. Environ. Sci. Technol. 2010, 44, 6849.  doi: 10.1021/es101981r

    32. [32]

      Barbé, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. 2005, 80, 3157.  doi: 10.1111/j.1151-2916.1997.tb03245.x

    33. [33]

      Topoglidis, E.; Lutz, T.; Willis, R. L.; Barnett, C. J.; Cass, A. E. G.; Durrant, J. R. Faraday Discuss. 2000, 116, 35.  doi: 10.1039/b003313h

    34. [34]

      Willis, R. L.; Olson, C.; O'Regan, B.; Lutz, T.; Nelson, J.; Durrant, J. R. J. Phys. Chem. B 2002, 106, 7605.  doi: 10.1021/jp020231n

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    8. [8]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    15. [15]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    16. [16]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    17. [17]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    18. [18]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(7)
  • Abstract views(1273)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return