Citation: Gao Zhen, Huang Kun, Du Lin, Liu Huizhou. Interfacial Behavior of Acidic Organophosphorus Extractant Monolayer at Air-Water Interface: Subphase pH and Spreading Solvent Effect[J]. Acta Chimica Sinica, ;2019, 77(6): 506-514. doi: 10.6023/A19010006 shu

Interfacial Behavior of Acidic Organophosphorus Extractant Monolayer at Air-Water Interface: Subphase pH and Spreading Solvent Effect

  • Corresponding author: Huang Kun, huangkun@ustb.edu.cn
  • Received Date: 2 January 2019
    Available Online: 18 June 2019

    Fund Project: the National Natural Science Foundation of China 51074150the National Natural Science Foundation of China 51574213Project supported by the National Natural Science Foundation of China (Nos. 51574213, 51074150)

Figures(9)

  • The interfacial properties of extractant molecules have a significant impact on their complexation reaction activity with rare earth ions at liquid-liquid interface during solvent extraction. Although it is known that acidic organophosphorus extractant exists mainly in the form of dimers in nonpolar organic solvent, the research on solvent extraction kinetics has pointed out that the extractant molecules should react with rare earth ions in the form of monomers at the interface. Therefore, understanding the existing forms of acidic organophosphorus extractant at the interface will help comprehend the interfacial reaction process in solvent extraction. Traditionally, the interfacial properties of the extractant molecules were investigated by measuring interfacial tension isotherms and calculating interfacial adsorption parameters. However, this method can not provide the information of interfacial active species and the aggregation behavior of them. In order to clarify the characteristics of the interfacial behavior of organic extractant molecules at the interface, the effect of subphase pH and the polarity of spreading organic solvent on the adsorption and aggregation behavior of P507 molecules at the air-water interface were investigated by surface pressure-area isotherms and infrared reflectance absorption spectroscopy (IRRAS) based on Langmuir monolayer technique. It was found that P507 monolayers spread by n-hexane at the air-water interface had a certain solubility in the subphase water due to the ionization of the polar groups of P507 molecules. And the solubility decreased as the subphase pH decreased. Thus, the surface pressure-area isotherms changed significantly due to the total amount of P507 molecules remaining on the surface of water changed with the subphase pH. When the subphase pH decreased below 2.0, the influence of the solubility of P507 molecules became inapparent and the amount of P507 molecules remaining on the surface water was almost unchanged. The intermolecular hydrogen bonds formed between the polar groups due to the protonation degree of P507 monolayers improved and the hydration ability of P507 polar groups was weakened. The aggregates formed in the monolayer were confirmed by the red shift of P-O-H groups in IRRAS spectra. However, when the P507 monolayers were spread by polar organic solvent (dichloromethane and chloroform), the existing forms of P507 molecules in the monolayers were changed with the polarity of spreading solvent. And the π-A isotherms of P507 monolayers didn't exhibit the shrinkage of molecular area which existed in the monolayers spread by n-hexane when subphase pH decreased. It meant that the existing forms and aggregation behavior of P507 molecules in monolayers could be altered by the spreading solvent and more P507 monomers existed in the monolayer as the polarity of spreading solvent increased. The conclusion was confirmed by the shift of the peak positions of P-O-H with the spreading solvent in IRRAS spectra. The present work highlights the significant influence of the existing forms of P507 molecules on the interfacial properties of P507 monolayer at the air-water interface and the aggregation behavior in the monolayers can be changed by subphase pH and the spreading solvent.
  • 加载中
    1. [1]

      Jha, M. K.; Kumari, A.; Panda, R.; Kumar, J. R.; Yoo, K.; Lee, J. Y. Hydrometallurgy 2016, 165, 2.  doi: 10.1016/j.hydromet.2016.01.035

    2. [2]

      He, Y.; Chen, K.; Srinivasakannan, C.; Li, S.; Yin, S.; Peng, J.; Guo, S.; Zhang, L. Chem. Eng. J. 2018, 354, 1068.  doi: 10.1016/j.cej.2018.07.193

    3. [3]

      Qiao, B. F.; Muntean, J. V.; de la Cruz, M. O.; Ellis, R. J. Langmuir 2017, 33, 6135.  doi: 10.1021/acs.langmuir.7b01230

    4. [4]

      Chen, K.; He, Y.; Srinivasakannan, C.; Li, S.; Yin, S.; Peng, J.; Guo, S.; Zhang, L. Chem. Eng. J. 2019, 356, 453.  doi: 10.1016/j.cej.2018.09.039

    5. [5]

      Miyake, Y.; Matsuyama, H.; Nishida, M.; Nakai, M.; Nagase, N.; Teramoto, M Hydrometallurgy 1990, 23, 19.

    6. [6]

      Vandegrift, G. F.; Horwitz, E. P. J. Inorg. Nuck. Chem. 1980, 42, 119.  doi: 10.1016/0022-1902(80)80056-X

    7. [7]

      Kanki, T.; Kim, H.; Tomita, A.; Asano, T.; Sano, N. Sep. Purif. Technol. 2000, 19, 93.  doi: 10.1016/S1383-5866(99)00081-7

    8. [8]

      Shen, J. L.; Xi, Z. K.; Gao, Z. L.; Sun, S. X.; Song, Q. S.; Guo, L. Q. Chin. J. Appl. Chem. 1984, 4, 57.

    9. [9]

      Su, W. R.; Chen, J. Ind. Eng. Chem. Res. 2016, 55, 8424.  doi: 10.1021/acs.iecr.6b01709

    10. [10]

      Wang, W. T.; Ye, S. J. Phys. Chem. Chem. Phys. 2017, 19, 4488.  doi: 10.1039/C6CP07827C

    11. [11]

      Zhang, T.; Cathcart, M. G.; Vidalis, A. S.; Allen, H. C. Chem. Phys. Lipids 2016, 200, 24.  doi: 10.1016/j.chemphyslip.2016.06.001

    12. [12]

      Chen, Y. Y.; Sun, R. G.; Wang, F. Y.; Pan, Q. Acta Chim. Sinica 2011, 69, 2299.
       

    13. [13]

      Zhang, B. B.; Ma, C.; Wang, X. G.; Hu, M. B.; Wang, X. L.; Wang, W. Acta Chim. Sinica 2015, 73, 441.  doi: 10.3866/PKU.WHXB201412301
       

    14. [14]

      Zhang, T.; Brantley, S. L.; Verreault, D.; Dhankani, R.; Corcelli, S. A.; Allen, H. C. Langmuir 2018, 34, 530.  doi: 10.1021/acs.langmuir.7b03579

    15. [15]

      Adams, E. M.; Wellen, B. A.; Thiraux, R.; Reddy, S. K.; Vidalis, A. S.; Paesani, F.; Allen, H. C. Phys. Chem. Chem. Phys. 2017, 19, 10481.  doi: 10.1039/C7CP00167C

    16. [16]

      Song, C. S.; Ye, R. Q.; Mu, B. Z. Acta Chim. Sinica 2009, 67, 2038.  doi: 10.3321/j.issn:0567-7351.2009.17.016
       

    17. [17]

      Fang, L. M. M.S. Thesis, Harbin University of Science and Technology, Harbin, 2013.

    18. [18]

      Li, S. Y.; Du, L.; Tsona, N. T.; Wang, W. X. Chemosphere 2018, 196, 323.  doi: 10.1016/j.chemosphere.2017.12.157

    19. [19]

      Adams, E. M.; Verreault, D.; Jayarathne, T.; Cochran, R. E.; Stone, E. A.; Allen, H. C. Phys. Chem. Chem. Phys. 2016, 18, 32345.  doi: 10.1039/C6CP06887A

    20. [20]

      Yang, H. W.; Zhu, P. X.; Feng, Y. J.; Chen, Z.; Zhou, D. L.; Wu, D. C. Acta Chim. Sinica 2007, 65, 2081.
       

    21. [21]

      Uphaus, R. A.; Vandegrift, G. F.; Horwitz, E. P. J. Colloid Interface Sci. 1982, 90, 380.  doi: 10.1016/0021-9797(82)90306-X

    22. [22]

      Gershfeld, N. L.; Pak, C. Y. J. Colloid Interface Sci. 1967, 23, 215.  doi: 10.1016/0021-9797(67)90105-1

    23. [23]

      Zhang, L. R.; Chen, S. M.; Jin, D. S.; Motoko, U.; Tisato, K. Acta Chim. Sinica 1992, 50, 868.
       

    24. [24]

      Zeng, Z. X.; Chen, Q.; Xue, W. L.; Nie, F. Chin. J. Chem. Eng. 2004, 12, 263.

    25. [25]

      Yao, Y. L.; Zeng, Z. X.; Xue, W. L.; Huang, S. D. Acta Chim. Sinica 2005, 63, 1939.  doi: 10.3321/j.issn:0567-7351.2005.21.001
       

    26. [26]

      Cratin, P. D. J. Dispersion Sci. Technol. 1993, 14, 559.  doi: 10.1080/01932699308943427

    27. [27]

      Binghua, Y.; Nagaosa, Y.; Satake, M.; Nomura, A.; Horita, K. Solvent Extr. Ion Exch. 1996, 14, 849.  doi: 10.1080/07366299608918372

    28. [28]

      Petty, M. C. Langmuir-Blodgett films:An introduction, Cambridge University Press, Cambridge, 1996, pp. 55~57.

    29. [29]

      Guennouni, Z.; Cousin, F.; Faure, M. C.; Perrin, P.; Limagne, D.; Konovalov, O.; Goldmann, M. Langmuir 2016, 32, 1971.  doi: 10.1021/acs.langmuir.5b02652

    30. [30]

      Ibrahim, T. H. Sep. Sci. Technol. 2011, 46, 2157.  doi: 10.1080/01496395.2011.594478

    31. [31]

      Sun, G. X.; Yang, Y. H.; Bao, M.; Cui, Y.; Sun, S. X. J. Inorg. Chem. 1996, 2, 212.  doi: 10.3321/j.issn:1001-4861.1996.02.021

    32. [32]

      Kusaka, R.; Watanabe, M. Phys. Chem. Chem. Phys. 2018, 20, 29588.  doi: 10.1039/C8CP04558E

    33. [33]

      Nukada, K.; Naito, K.; Maeda, U. Bull. Chem. Soc. Jpn. 1960, 33, 894.  doi: 10.1246/bcsj.33.894

    34. [34]

      Wu, J. G.; Shi, N.; Gao, H. C.; Chen, D.; Guo, H.; Weng, S. F.; Xu, G. X. Sci. China, Ser. B 1983, 12, 1071.

    35. [35]

      Xu, Z. H.; Wong, S. F.; Guo, H.; Wu, J. G.; Xu, G. X. Acta Sci. Nat. Univ. Pekin. 1983, 6, 45.

    36. [36]

      Zhang, C.; Wang, L.; Huang, X.; Dong, J.; Long, Z.; Zhang, Y. Hydrometallurgy 2014, 147, 7.

    37. [37]

      Ta, A. T.; Hegde, G. A.; Etz, B. D.; Baldwin, A. G.; Yang, Y.; Shafer, J. C.; Jensen, M. P.; Maupin, C. M.; Vyas, S. J. Phys. Chem. B 2018, 122, 5999.  doi: 10.1021/acs.jpcb.8b03165

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    3. [3]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    4. [4]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    15. [15]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    16. [16]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    17. [17]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    18. [18]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    19. [19]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    20. [20]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

Metrics
  • PDF Downloads(18)
  • Abstract views(955)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return