Citation: Bo Yifan, Liu Yuyu, Chang Yongzheng, Li Yinxiang, Zhang Xiaofei, Song Chunyuan, Xu Weifeng, Cao Hongtao, Huang Wei. Theoretical and Experimental Studies on Raman Spectroscopy of Cyclic Fluorene-Based Strained Semiconductors[J]. Acta Chimica Sinica, ;2019, 77(5): 442-446. doi: 10.6023/A19010005 shu

Theoretical and Experimental Studies on Raman Spectroscopy of Cyclic Fluorene-Based Strained Semiconductors

  • Corresponding author: Chang Yongzheng, iamyzchang@njupt.edu.cn Cao Hongtao, iamhtcao@njupt.edu.cn Huang Wei, iamwhuang@njupt.edu.cn
  • These authors contributed equally to this work
    Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn.
  • Received Date: 2 January 2019
    Available Online: 25 May 2019

    Fund Project: the National Natural Science Foundation of China 61605090Natural Science Foundation of Jiangsu Province of China BK20180751Natural Science Foundation of Jiangsu Province of China BK20150832The Nanjing University of Post and Telecommunications NY217082Doctoral Fund of Ministry of Education of China 20133223110007Project supported by the National Natural Science Foundation of China (Nos. 21503114, 21602111, 61605090), Doctoral Fund of Ministry of Education of China (20133223110007), Natural Science Foundation of Jiangsu Province of China (BK20150832, BK20180751), The Nanjing University of Post and Telecommunications (NY217082), Synergetic Innovation Center for Organic Electronics and Information Displays and Excellent science and technology innovation team of Jiangsu Higher Education Institutions (2013). Project was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China 21602111the National Natural Science Foundation of China 21503114

Figures(6)

  • Cyclic fluorene-based strained semiconductors which achieve both merits of hoop-shaped cycloparaphenylenes and fluorene-based emitters with high-efficiency feature have attracted increasing attention from synthetic chemists and theoreticians due to their aesthetic molecular structure, radial p orbitals and nanosized cavities. Compared with linear fluorene-based semiconductors, Cyclic fluorene-based strained semiconductors exhibit unique photoelectrical properties. For example, contrary to the deep blue emission of linear fluorene-based molecules, the controlled cyclic fluorene-based strained molecules show stronger green emission. However, the properties of molecular vibrations of cyclic fluorene-based strained materials have not been reported so far. In this article, [4]Cyclo-9, 9-dipropyl-2, 7-fluorene (CF) and linear quaterfluorenes (LF) were synthesized as modeling compounds to explore the differences of Raman spectra on structures by theoretical and experimental studies. Raman spectroscopy measurements have been presented on polymer poly(9, 9-dioctylfluorene) (PFO) and LF, and compare them with CF. In addition, we have calculated the theoretical Raman spectra of CF and LF based on time-dependent density functional theory (TDDFT), which are then compared to the experimental results for the assignment of different modes. All calculations were performed at 6-31G (d) basis set along with the range corrected B3LYP density functional. The results demonstrate that the Raman peak positions of CF which are analogous to those of carbon nanotubes such as G band are shifted. Compared to the Raman spectra of LF, G1 and G2 peaks of CF shifted to lower frequency region, however G3 peaks shifted to higher frequency region. The relative intensity of Raman peaks in CF especially in low frequency region has increased. These properties of Raman in CF can be assigned to the changed structure of conjugated backbone and electrical structure due to strain and every fluorene unit of CF has involved in vibration and the delocalization of π electrons gets higher. These results provide powerful basis for correlating structure and properties on strain organic semiconductors by Raman spectra.
  • 加载中
    1. [1]

      Xie, L. H.; Yin, C. R.; Lai, W. Y.; Fan, Q. L.; Huang, W. Prog. Polym. Sci. 2012, 37, 1192.  doi: 10.1016/j.progpolymsci.2012.02.003

    2. [2]

      Sun, M. L.; Xu, R. C.; Xie, L. H.; Wei, Y.; Huang, W. Chinese J. Chem. 2015, 33, 815.  doi: 10.1002/cjoc.v33.8

    3. [3]

      Qian, Y.; Zhang, X.; Xie, L. H.; Qi, D.; Chandran, B. K.; Chen, X.; Huang, W. Adv. Mater. 2016, 28, 9243.  doi: 10.1002/adma.201601278

    4. [4]

      Bao, Z. N.; Rogers, J. A.; Katz, H. E. J. Mater. Chem. 1999, 9, 1895.  doi: 10.1039/a902652e

    5. [5]

      Park, S.; Lee, M. H.; Ahn, K. S.; Choi, H. H.; Shin, J.; Xu, J.; Mei, J. G.; Cho, K.; Bao, Z. A.; Lee, D. R.; Kang, M. S.; Kim, D. H. Adv. Funct. Mater. 2016, 26, 4627.  doi: 10.1002/adfm.v26.26

    6. [6]

      Liu, Y.; Yuan, J.; Zou, Y. P.; Li, Y. F. Acta Chim. Sinica 2017, 75, 257.  doi: 10.3969/j.issn.0253-2409.2017.03.001
       

    7. [7]

      Songbuer; Li, M. H.; Imerhasan, M. Chin. J. Org. Chem. 2018, 38, 594.
       

    8. [8]

      Yamago, S.; Kayahara, E.; Iwamoto, T. Chem. Rec. 2014, 14, 84.  doi: 10.1002/tcr.v14.1

    9. [9]

      Lewis, S. E. Chem. Soc. Rev. 2015, 44, 2221.  doi: 10.1039/C4CS00366G

    10. [10]

      Darzi, E. R.; Jasti, R. Chem. Soc. Rev. 2015, 44, 6401.  doi: 10.1039/C5CS00143A

    11. [11]

      Segawa, Y.; Yagi, A.; Itami, K. Phys. Sci. Rev. 2017, 2, 20160102.
       

    12. [12]

      Kayahara, E.; Kouyama, T.; Kato, T.; Yamago, S. J. Am. Chem. Soc. 2016, 138, 338.  doi: 10.1021/jacs.5b10855

    13. [13]

      Liu, Y. Y.; Lin, J. Y.; Bo, Y. F.; Xie, L. H.; Yi, M. D.; Zhang, X. W.; Zhang, H. M.; Loh, T. P.; Huang, W. Org. Lett. 2016, 18, 172.  doi: 10.1021/acs.orglett.5b03038

    14. [14]

      Fujitsuka, M.; Cho, D. W.; Iwamoto, T.; Yamago, S.; Majima, T. Phys. Chem. Chem. Phys. 2012, 14, 14585.  doi: 10.1039/c2cp42712e

    15. [15]

      Segawa, Y.; Fukazawa, A.; Matsuura, S.; Omachi, H.; Yamaguchi, S.; Irle, S.; Itami, K. Org. Biomol. Chem. 2012, 10, 5979.  doi: 10.1039/c2ob25199j

    16. [16]

      Camacho, C.; Niehaus, T. A.; Itami, K.; Irle, S. Chem. Sci. 2013, 4, 187.  doi: 10.1039/C2SC20878D

    17. [17]

      Castiglioni, C.; Delzoppo, M.; Zerbi, G. J. Raman Spectrosc. 1993, 24, 485.  doi: 10.1002/jrs.v24:8

    18. [18]

      Rebelo, S. L.; Guedes, A.; Szefczyk, M. E.; Pereira, A. M.; Araujo, J. P.; Freire, C. Phys. Chem. Chem. Phys. 2016, 18, 12784.  doi: 10.1039/C5CP06519D

    19. [19]

      Moura, L. G.; Moutinho, M. V. O.; Venezuela, P.; Mauri, F.; Righi, A.; Strano, M. S.; Fantini, C.; Pimenta, M. A. Carbon 2017, 117, 41.  doi: 10.1016/j.carbon.2017.02.048

    20. [20]

      Piao, Y.; Simpson, J. R.; Streit, J. K.; Ao, G.; Zheng, M.; Fagan, J. A.; Hight Walker, A. R. ACS Nano 2016, 10, 5252.  doi: 10.1021/acsnano.6b01031

    21. [21]

      Fujitsuka, M.; Iwamoto, T.; Kayahara, E.; Yamago, S.; Majima, T. ChemPhysChem 2013, 14, 1570.  doi: 10.1002/cphc.v14.8

    22. [22]

      Chen, H.; Golder, M. R.; Wang, F.; Jasti, R.; Swan, A. K. Carbon 2014, 67, 203.  doi: 10.1016/j.carbon.2013.09.082

    23. [23]

      Alvarez, M. P.; Burrezo, P. M.; Kertesz, M.; Iwamoto, T.; Yamago, S.; Xia, J.; Jasti, R.; Navarrete, J. T. L.; Taravillo, M.; Baonza, V. G. Angew. Chem. Int. Ed. 2014, 53, 7033.  doi: 10.1002/anie.201400719

    24. [24]

      Chen, H.; Golder, M. R.; Wang, F.; Doorn, S. K.; Jasti, R.; Tretiak, S.; Swan, A. K. J. Phys. Chem. C 2015, 119, 2879.  doi: 10.1021/jp5117195

    25. [25]

      Pena-Alvarez, M.; Qiu, L.; Taravillo, M.; Baonza, V. G.; Delgado, M. C.; Yamago, S.; Jasti, R.; Navarrete, J. T.; Casado, J.; Kertesz, M. Phys. Chem. Chem. Phys. 2016, 18, 11683.  doi: 10.1039/C5CP05500H

    26. [26]

      Liu, Y. Y.; Li, J. W.; Bo, Y. F.; Yang, L.; Zhang, X. F.; Xie, L. H.; Yi, M. D.; Huang, W. Acta Phys.-Chim. Sin. 2017, 33, 1803.

    27. [27]

      Ariu, M.; Lidzey, D. G.; Bradley, D. D. C. Synthetic Met. 2000, 111, 607.
       

    28. [28]

      Arif, M.; Volz, C.; Guha, S. Phys. Rev. Lett. 2006, 96, 025503.  doi: 10.1103/PhysRevLett.96.025503

    29. [29]

      Volz, C.; Arif, M.; Guha, S. J. Chem. Phys. 2007, 126, 064905.
       

    30. [30]

      Tsoi, W. C.; Lidzey, D. G. J. Phys. Condens. Mat. 2008, 20, 125213.  doi: 10.1088/0953-8984/20/12/125213

    31. [31]

      Liu, B.; Lin, J. Y.; Liu, F.; Yu, M. N.; Zhang, X. W.; Xia, R. D.; Yang, T.; Fang, Y. T.; Xie, L. H.; Huang, W. ACS Appl. Mater. Inter. 2016, 8, 21648.  doi: 10.1021/acsami.6b05247

    32. [32]

      Irle, S.; Lischka, H. J. Mol. Struc.-Theochem 1996, 364, 15.  doi: 10.1016/0166-1280(95)04465-5

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    6. [6]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    7. [7]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    8. [8]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    15. [15]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    16. [16]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    20. [20]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

Metrics
  • PDF Downloads(10)
  • Abstract views(1131)
  • HTML views(246)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return