Citation: Xu Shuya, Liu Zhihong, Zhang Huai, Yu Jinran. Preparation and Properties of Piezotronics Enhanced Plasmonic Photocatalytic Material by Ag/BaTiO3[J]. Acta Chimica Sinica, ;2019, 77(5): 427-433. doi: 10.6023/A19010003 shu

Preparation and Properties of Piezotronics Enhanced Plasmonic Photocatalytic Material by Ag/BaTiO3

  • Corresponding author: Xu Shuya, xushuya@binn.cas.cn
  • Received Date: 1 January 2019
    Available Online: 28 May 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 51605034)the National Natural Science Foundation of China 51605034

Figures(11)

  • x mol/L-Ag/BaTiO3 (x=0.01, 0.02, 0.04, where x is concentration of Ag) plasmonic photocatalysts were fabricated by precipitating Au nanoparticles on BaTiO3 nano-piezoelectric through a photochemical reducing approach. The plasmonic piezo-photocatalytic composite material can simultaneously solve the problems of low photocatalytic efficiency and narrow light absorption range in the photocatalysis process. BaTiO3 nano-piezoelectric were synthesized by a hydrothermal synthesis, Ag nanoparticles were deposited on the surface of BaTiO3 powder using a photoreduction reaction. Subsequently, the effects of microtopography, optical properties and degradation of dye were discussed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray photoelectron spectroscopy (XPS), UV-visible absorption spectra, photocurrent, photoelectrocatalytic, etc. The mechanism of piezoelectric photocatalysis and the effect of the concentration of ionic particles on the properties of the composite photocatalyst were investigated. The intensity and excitation mode of localized surface plasmon resonance (LSPR) vary on account of the different densities of nanoparticles, the 0.02 mol/L Ag-BaTiO3 showed an excellent photocatalytic performance for degrading 91% RhB in 75 min under full-spectrum light irradiation with ultrasonic excitation which can produce piezoelectric charges on the surfaces of the BaTiO3 nanocubes, and the degradation efficiency is increased by 21%. The effects of hybrid structure piezoelectric potential in nano-piezoelectric has been confirmed to express a great influence on surface plasmon resonance photocatalytic activity. The improvement of catalytic performance is due to the synergistic effect of piezoelectric effect and surface plasmon resonance effect. The LSPR of Ag nanoparticles that uniformly decorated on the surface of BaTiO3 nano-piezoelectric, widen the range of light absorption from ultraviolet to visible light. With introducing ultrasonic excitation to renew the piezoelectric charges on the surfaces of the BaTiO3 nanocubes, the piezoelectric field originated from the deformation of BaTiO3 nanotubes can further enhance the separation of photo-carriers induced by the localized surface plasmon resonance (LSPR), and promote the generation of hydroxyl radicals with strong oxidizing ability and accelerate the degradation of organic dyes. This work based on the piezotronic effect of the BaTiO3 nanocubes, assisting the surface plasmon resonance in photocatalysis improved the degradation efficiency of Rh B significantly. In addition, this discovery could be extended to other material systems to provide an effective technology for environment purification.
  • 加载中
    1. [1]

      Wang, Z.; Song, J. Science 2016, 312, 5771.

    2. [2]

      Wang, Z. Adv. Mater. 2012, 24, 4632.  doi: 10.1002/adma.v24.34

    3. [3]

      Wu, W.; Wang, Z. Nat. Rev. Mater. 2016, 1, 16031.  doi: 10.1038/natrevmats.2016.31

    4. [4]

      Park, K.; Xu, S.; Liu, Y.; Hwang, G.; Kang, S. J.; Wang, Z.; Lee, K. Nano Lett. 2010, 10, 4939.  doi: 10.1021/nl102959k

    5. [5]

      Wang, X.; Song, J.; Liu, J.; Wang, Z. Science 2007, 316, 102.  doi: 10.1126/science.1139366

    6. [6]

      Wang, X.; Zhou, J.; Song, J.; Liu, J.; Xu, N.; Wang, Z. Nano Lett. 2006, 6, 2768.  doi: 10.1021/nl061802g

    7. [7]

      Xie, L.; Huang, X.; Li, B.; Zhi, C.; Tanakae, T.; Jiang, P. Phys. Chem. Chem. Phys. 2013, 15, 17560.  doi: 10.1039/c3cp52799a

    8. [8]

      Yang, K.; Huang, X.; He, J.; Jiang, P. Adv. Mater. Interfaces 2015, 2, 1500361.  doi: 10.1002/admi.201500361

    9. [9]

      Feng, Y.; Ling, L.; Wang, Y.; Xu, Z.; Cao, F.; Li, H.; Bian, Z. Nano Energy 2017, 40, 481.  doi: 10.1016/j.nanoen.2017.08.058

    10. [10]

      Xu, X.; Jia, Y.; Xiao, L.; Wu, Z. Chemosphere 2018, 193, 1143.  doi: 10.1016/j.chemosphere.2017.11.116

    11. [11]

      Wu, M.; Lee, J.; Chung, Y.; Srinivaas, M.; Wu, J. Nano Energy 2017, 40, 369.  doi: 10.1016/j.nanoen.2017.08.042

    12. [12]

      Lin, J.; Tao, Y.; Wu, M.; Chou, T.; Lin, Z.; Wu, J. Nano Energy 2017, 31, 575.  doi: 10.1016/j.nanoen.2016.12.013

    13. [13]

      Wu, J.; Chang, W.; Chang, Y.; Chang, C. Adv. Mater. 2016, 28, 3718.  doi: 10.1002/adma.201505785

    14. [14]

      Lan, S.; Feng, J.; Xiong, Y.; Tian, S.; Liu, S.; Kong, L. Environ. Sci. Tech. 2017, 51, 6560.  doi: 10.1021/acs.est.6b06426

    15. [15]

      Li, J.; Cai, L.; Shang, J.; Yu, Y.; Zhang, L. Adv. Mater. 2016, 28, 4059.  doi: 10.1002/adma.201600301

    16. [16]

      Li, H.; Sang, Y.; Chang, S.; Huang, X.; Zhang, Y.; Yang, R.; Wang, Z. Nano Lett. 2015, 15, 2372.  doi: 10.1021/nl504630j

    17. [17]

      Hong, K; Xu, H.; Konishi, H.; Li, X. J. Phys. Chem. Lett. 2010, 1, 997.  doi: 10.1021/jz100027t

    18. [18]

      Hong, K; Xu, H.; Konishi, H.; Li, X. J. Phys. Chem. C 2010, 116, 13045.
       

    19. [19]

      Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. J. Mater. Chem. A 2015, 3, 2485.  doi: 10.1039/C4TA04461D

    20. [20]

      Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Wang, X. Chem. Soc. Rev. 2014, 43, 5234.  doi: 10.1039/C4CS00126E

    21. [21]

      Wang, T.; Song, Y.; Jin, L. Chinese J. Chem. 2017, 35, 1755.  doi: 10.1002/cjoc.v35.11

    22. [22]

      Su, Y.; Peng, T.; Xing, F.; Li, D.; Fan, C. Acta Chim. Sinica 2017, 75, 1036(in Chinese).
       

    23. [23]

      Zhang, C.; Zhang, J.; Lin, J.; Jin, Q.; Xu, M.; Yao, J. Acta Chim. Sinica 2017, 75, 860(in Chinese).
       

    24. [24]

      Wang, P.; Huang, B.; Dai, Y.; Wang, B. M. Phys. Chem. Chem. Phys. 2012, 14, 9813.  doi: 10.1039/c2cp40823f

    25. [25]

      Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Watanabe, T. J. Am. Chem. Soc. 2008, 130, 1676.  doi: 10.1021/ja076503n

    26. [26]

      Jiang, J.; Li, H.; Zhang, L. Chem.-Eur. J. 2012, 18, 6360.  doi: 10.1002/chem.201102606

    27. [27]

      Zhang, N.; Liu, S.; Xu, Y. Nanoscale 2012, 4, 2227.  doi: 10.1039/c2nr00009a

    28. [28]

      Linic, S.; Christopher, P.; Ingram, D. Nat. Mater. 2011, 10, 911.  doi: 10.1038/nmat3151

    29. [29]

      Chen, J.; Wu, J.; Wu, P.; Tsai, D. J. Phys. Chem. C 2010, 115, 210.

    30. [30]

      Yoo, J.; Altomare, M.; Mokhtar, M.; Alshehri, A.; Al-Thabaiti, S. A.; Mazare, A.; Schmuki, P. J. Phys. Chem. C 2016, 120, 15884.  doi: 10.1021/acs.jpcc.5b12050

    31. [31]

      Zhao, L.; Zhang, Y.; Wang, F.; Hu, S.; Wang, X.; Ma, B.; Sang, Y. Nano Energy 2017, 39, 461.  doi: 10.1016/j.nanoen.2017.07.037

    32. [32]

      Mimura, K. I.; Kato, K. Appl. Phys. Express 2014, 7, 061501.  doi: 10.7567/APEX.7.061501

    33. [33]

      Brongersma, M.; Halas, N. J.; Nordlander, P. Nat. Nanotechnol. 2015, 10, 25.  doi: 10.1038/nnano.2014.311

    34. [34]

      Dutta, P.; Gregg, J. Chem. Mater. 1992, 4, 843.  doi: 10.1021/cm00022a019

    35. [35]

      Pecharroman, C.; Esteban, F.; Bartolome, J.; Lopez-Esteban, S.; Moya, J. Adv. Mater. 2001, 13, 1541.  doi: 10.1002/1521-4095(200110)13:20<1541::AID-ADMA1541>3.0.CO;2-X

    36. [36]

      Yang, G.; Wang, W.; Zhou, Y.; Lu, H.; Yang, G.; Chen, Z. Appl. Phys. Lett. 2002, 81, 3969.  doi: 10.1063/1.1522832

    37. [37]

      Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.; Itzkan, I.; Dasari, R.; Feld, M. Phys. Rev. Lett. 1997, 78, 1667.  doi: 10.1103/PhysRevLett.78.1667

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    7. [7]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    10. [10]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    11. [11]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

Metrics
  • PDF Downloads(13)
  • Abstract views(1745)
  • HTML views(297)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return