Citation: Xu Shuya, Liu Zhihong, Zhang Huai, Yu Jinran. Preparation and Properties of Piezotronics Enhanced Plasmonic Photocatalytic Material by Ag/BaTiO3[J]. Acta Chimica Sinica, ;2019, 77(5): 427-433. doi: 10.6023/A19010003 shu

Preparation and Properties of Piezotronics Enhanced Plasmonic Photocatalytic Material by Ag/BaTiO3

  • Corresponding author: Xu Shuya, xushuya@binn.cas.cn
  • Received Date: 1 January 2019
    Available Online: 28 May 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 51605034)the National Natural Science Foundation of China 51605034

Figures(11)

  • x mol/L-Ag/BaTiO3 (x=0.01, 0.02, 0.04, where x is concentration of Ag) plasmonic photocatalysts were fabricated by precipitating Au nanoparticles on BaTiO3 nano-piezoelectric through a photochemical reducing approach. The plasmonic piezo-photocatalytic composite material can simultaneously solve the problems of low photocatalytic efficiency and narrow light absorption range in the photocatalysis process. BaTiO3 nano-piezoelectric were synthesized by a hydrothermal synthesis, Ag nanoparticles were deposited on the surface of BaTiO3 powder using a photoreduction reaction. Subsequently, the effects of microtopography, optical properties and degradation of dye were discussed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray photoelectron spectroscopy (XPS), UV-visible absorption spectra, photocurrent, photoelectrocatalytic, etc. The mechanism of piezoelectric photocatalysis and the effect of the concentration of ionic particles on the properties of the composite photocatalyst were investigated. The intensity and excitation mode of localized surface plasmon resonance (LSPR) vary on account of the different densities of nanoparticles, the 0.02 mol/L Ag-BaTiO3 showed an excellent photocatalytic performance for degrading 91% RhB in 75 min under full-spectrum light irradiation with ultrasonic excitation which can produce piezoelectric charges on the surfaces of the BaTiO3 nanocubes, and the degradation efficiency is increased by 21%. The effects of hybrid structure piezoelectric potential in nano-piezoelectric has been confirmed to express a great influence on surface plasmon resonance photocatalytic activity. The improvement of catalytic performance is due to the synergistic effect of piezoelectric effect and surface plasmon resonance effect. The LSPR of Ag nanoparticles that uniformly decorated on the surface of BaTiO3 nano-piezoelectric, widen the range of light absorption from ultraviolet to visible light. With introducing ultrasonic excitation to renew the piezoelectric charges on the surfaces of the BaTiO3 nanocubes, the piezoelectric field originated from the deformation of BaTiO3 nanotubes can further enhance the separation of photo-carriers induced by the localized surface plasmon resonance (LSPR), and promote the generation of hydroxyl radicals with strong oxidizing ability and accelerate the degradation of organic dyes. This work based on the piezotronic effect of the BaTiO3 nanocubes, assisting the surface plasmon resonance in photocatalysis improved the degradation efficiency of Rh B significantly. In addition, this discovery could be extended to other material systems to provide an effective technology for environment purification.
  • 加载中
    1. [1]

      Wang, Z.; Song, J. Science 2016, 312, 5771.

    2. [2]

      Wang, Z. Adv. Mater. 2012, 24, 4632.  doi: 10.1002/adma.v24.34

    3. [3]

      Wu, W.; Wang, Z. Nat. Rev. Mater. 2016, 1, 16031.  doi: 10.1038/natrevmats.2016.31

    4. [4]

      Park, K.; Xu, S.; Liu, Y.; Hwang, G.; Kang, S. J.; Wang, Z.; Lee, K. Nano Lett. 2010, 10, 4939.  doi: 10.1021/nl102959k

    5. [5]

      Wang, X.; Song, J.; Liu, J.; Wang, Z. Science 2007, 316, 102.  doi: 10.1126/science.1139366

    6. [6]

      Wang, X.; Zhou, J.; Song, J.; Liu, J.; Xu, N.; Wang, Z. Nano Lett. 2006, 6, 2768.  doi: 10.1021/nl061802g

    7. [7]

      Xie, L.; Huang, X.; Li, B.; Zhi, C.; Tanakae, T.; Jiang, P. Phys. Chem. Chem. Phys. 2013, 15, 17560.  doi: 10.1039/c3cp52799a

    8. [8]

      Yang, K.; Huang, X.; He, J.; Jiang, P. Adv. Mater. Interfaces 2015, 2, 1500361.  doi: 10.1002/admi.201500361

    9. [9]

      Feng, Y.; Ling, L.; Wang, Y.; Xu, Z.; Cao, F.; Li, H.; Bian, Z. Nano Energy 2017, 40, 481.  doi: 10.1016/j.nanoen.2017.08.058

    10. [10]

      Xu, X.; Jia, Y.; Xiao, L.; Wu, Z. Chemosphere 2018, 193, 1143.  doi: 10.1016/j.chemosphere.2017.11.116

    11. [11]

      Wu, M.; Lee, J.; Chung, Y.; Srinivaas, M.; Wu, J. Nano Energy 2017, 40, 369.  doi: 10.1016/j.nanoen.2017.08.042

    12. [12]

      Lin, J.; Tao, Y.; Wu, M.; Chou, T.; Lin, Z.; Wu, J. Nano Energy 2017, 31, 575.  doi: 10.1016/j.nanoen.2016.12.013

    13. [13]

      Wu, J.; Chang, W.; Chang, Y.; Chang, C. Adv. Mater. 2016, 28, 3718.  doi: 10.1002/adma.201505785

    14. [14]

      Lan, S.; Feng, J.; Xiong, Y.; Tian, S.; Liu, S.; Kong, L. Environ. Sci. Tech. 2017, 51, 6560.  doi: 10.1021/acs.est.6b06426

    15. [15]

      Li, J.; Cai, L.; Shang, J.; Yu, Y.; Zhang, L. Adv. Mater. 2016, 28, 4059.  doi: 10.1002/adma.201600301

    16. [16]

      Li, H.; Sang, Y.; Chang, S.; Huang, X.; Zhang, Y.; Yang, R.; Wang, Z. Nano Lett. 2015, 15, 2372.  doi: 10.1021/nl504630j

    17. [17]

      Hong, K; Xu, H.; Konishi, H.; Li, X. J. Phys. Chem. Lett. 2010, 1, 997.  doi: 10.1021/jz100027t

    18. [18]

      Hong, K; Xu, H.; Konishi, H.; Li, X. J. Phys. Chem. C 2010, 116, 13045.
       

    19. [19]

      Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. J. Mater. Chem. A 2015, 3, 2485.  doi: 10.1039/C4TA04461D

    20. [20]

      Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Wang, X. Chem. Soc. Rev. 2014, 43, 5234.  doi: 10.1039/C4CS00126E

    21. [21]

      Wang, T.; Song, Y.; Jin, L. Chinese J. Chem. 2017, 35, 1755.  doi: 10.1002/cjoc.v35.11

    22. [22]

      Su, Y.; Peng, T.; Xing, F.; Li, D.; Fan, C. Acta Chim. Sinica 2017, 75, 1036(in Chinese).
       

    23. [23]

      Zhang, C.; Zhang, J.; Lin, J.; Jin, Q.; Xu, M.; Yao, J. Acta Chim. Sinica 2017, 75, 860(in Chinese).
       

    24. [24]

      Wang, P.; Huang, B.; Dai, Y.; Wang, B. M. Phys. Chem. Chem. Phys. 2012, 14, 9813.  doi: 10.1039/c2cp40823f

    25. [25]

      Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Watanabe, T. J. Am. Chem. Soc. 2008, 130, 1676.  doi: 10.1021/ja076503n

    26. [26]

      Jiang, J.; Li, H.; Zhang, L. Chem.-Eur. J. 2012, 18, 6360.  doi: 10.1002/chem.201102606

    27. [27]

      Zhang, N.; Liu, S.; Xu, Y. Nanoscale 2012, 4, 2227.  doi: 10.1039/c2nr00009a

    28. [28]

      Linic, S.; Christopher, P.; Ingram, D. Nat. Mater. 2011, 10, 911.  doi: 10.1038/nmat3151

    29. [29]

      Chen, J.; Wu, J.; Wu, P.; Tsai, D. J. Phys. Chem. C 2010, 115, 210.

    30. [30]

      Yoo, J.; Altomare, M.; Mokhtar, M.; Alshehri, A.; Al-Thabaiti, S. A.; Mazare, A.; Schmuki, P. J. Phys. Chem. C 2016, 120, 15884.  doi: 10.1021/acs.jpcc.5b12050

    31. [31]

      Zhao, L.; Zhang, Y.; Wang, F.; Hu, S.; Wang, X.; Ma, B.; Sang, Y. Nano Energy 2017, 39, 461.  doi: 10.1016/j.nanoen.2017.07.037

    32. [32]

      Mimura, K. I.; Kato, K. Appl. Phys. Express 2014, 7, 061501.  doi: 10.7567/APEX.7.061501

    33. [33]

      Brongersma, M.; Halas, N. J.; Nordlander, P. Nat. Nanotechnol. 2015, 10, 25.  doi: 10.1038/nnano.2014.311

    34. [34]

      Dutta, P.; Gregg, J. Chem. Mater. 1992, 4, 843.  doi: 10.1021/cm00022a019

    35. [35]

      Pecharroman, C.; Esteban, F.; Bartolome, J.; Lopez-Esteban, S.; Moya, J. Adv. Mater. 2001, 13, 1541.  doi: 10.1002/1521-4095(200110)13:20<1541::AID-ADMA1541>3.0.CO;2-X

    36. [36]

      Yang, G.; Wang, W.; Zhou, Y.; Lu, H.; Yang, G.; Chen, Z. Appl. Phys. Lett. 2002, 81, 3969.  doi: 10.1063/1.1522832

    37. [37]

      Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.; Itzkan, I.; Dasari, R.; Feld, M. Phys. Rev. Lett. 1997, 78, 1667.  doi: 10.1103/PhysRevLett.78.1667

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

Metrics
  • PDF Downloads(12)
  • Abstract views(1661)
  • HTML views(297)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return