Digestive Ripening at Nanoscale and Its Application in the Preparation of Monodisperse Nanomaterials
- Corresponding author: Li Dongxiang, lidx@qust.edu.cn Xia Haibing, hbxia@sdu.edu.cn
Citation: Li Dongxiang, Gao Yuanyuan, Zhang Xiaofang, Xia Haibing. Digestive Ripening at Nanoscale and Its Application in the Preparation of Monodisperse Nanomaterials[J]. Acta Chimica Sinica, ;2019, 77(4): 305-315. doi: 10.6023/A18120512
Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Angew. Chem., Int. Ed. 2007, 46, 4630.
doi: 10.1002/(ISSN)1521-3773
Shi, R.; Gao, G.; Yi, R.; Zhou, K.; Qiu, G.; Liu, X. Chin. J. Chem. 2009, 27, 739.
doi: 10.1002/cjoc.v27:4
Ji, X. H.; Song, X. N.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G. J. Am. Chem. Soc. 2007, 129, 13939.
doi: 10.1021/ja074447k
Li, H. S.; Xia, H. B.; Wang, D. Y.; Tao, X. T. Langmuir 2013, 29, 5074.
doi: 10.1021/la400214x
Fu, Y.; Du, Y.; Yang, P.; Li, J.; Jiang, L. Sci. China B:Chem. 2007, 50, 494.
doi: 10.1007/s11426-007-0085-x
Liu, N.; Wang, K.; Gao, Y. Y.; Li, D. X.; Lin, W. H.; Li, C. F. Colloid. Surf. A:Physicochem. Engin. Asp. 2017, 535, 251.
doi: 10.1016/j.colsurfa.2017.09.017
Li, C. F.; Li, D. X.; Wan, G. Q.; Xu, J.; Hou, W. G. Nanoscale Res. Lett. 2011, 6, 440.
doi: 10.1186/1556-276X-6-440
Zaiser, E. M.; LaMer, V. K. J. Colloid Sci. 1948, 3, 571.
doi: 10.1016/S0095-8522(48)90050-6
LaMer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847.
doi: 10.1021/ja01167a001
Zhang, P. N.; Li, Y. J.; Wang, D. Y.; Xia, H. B. Particle Particle Sys. Character. 2016, 33, 924.
doi: 10.1002/ppsc.v33.12
Li, D. X.; Jang, Y. J.; Lee, J.; Lee, J. E.; Kochuveedu, S. T.; Kim, D. H. J. Mater. Chem. 2011, 21, 16453.
doi: 10.1039/c1jm13302k
Ostwald, W. Zeitsch. Phys. Chem. 1897, 22, 289.
Zhang, Z.; Wang, Z.; He, S.; Wang, C.; Jin, M.; Yin, Y. Chem. Sci. 2015, 6, 5197.
doi: 10.1039/C5SC01787D
Lin, X. M.; Sorensen, C. M.; Klabunde, K. J. J. Nanopart. Res. 2000, 2, 157.
doi: 10.1023/A:1010078521951
Shimpi, J. R.; Sidhaye, D. S.; Prasad, B. L. V. Langmuir 2017, 33, 9491.
doi: 10.1021/acs.langmuir.7b00193
Sidhaye, D. S.; Prasad, B. L. V. New J. Chem. 2011, 35, 755.
doi: 10.1039/C0NJ00359J
Yang, Y.; Gong, X.; Zeng, H.; Zhang, L.; Zhang, X.; Zou, C.; Huang, S. J. Phys. Chem. C 2010, 114, 256.
doi: 10.1021/jp909065y
Ji, Y.; Yang, S.; Guo, S.; Song, X.; Ding, B.; Yang, Z. Colloid. Surf. A:Physicochem. Engin. Asp. 2010, 372, 204.
doi: 10.1016/j.colsurfa.2010.10.028
Liu, S. L.; Han, M.; Shi, Y.; Zhang, C. Z.; Chen, Y.; Bao, J. C.; Dai, Z. H. Europ. J. Inorg. Chem. 2012, 3740.
Zhang, S.; Zhang, L.; Liu, K.; Liu, M.; Yin, Y.; Gao, C. Mater. Chem. Front. 2018, 2, 1328.
doi: 10.1039/C8QM00077H
Wang, P.; Qi, X.; Zhang, X.; Wang, T.; Li, Y.; Zhang, K.; Zhao, S.; Zhou, J.; Fu, Y. Nanoscale Res. Lett. 2017, 12, 25.
doi: 10.1186/s11671-016-1797-7
Cardenas-Trivino, G.; Klabunde, K. J.; Dale, E. B. Langmuir 1987, 3, 986.
doi: 10.1021/la00078a019
Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801.
Leff, D. V.; Ohara, P. C.; Heath, J. R.; Gelbart, W. M. J. Phys. Chem. 1995, 99, 7036.
doi: 10.1021/j100018a041
Lin, X. M.; Wang, G. M.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B 1999, 103, 5488.
doi: 10.1021/jp990729y
Lin, X. M.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 1999, 11, 198.
doi: 10.1021/cm980665o
Bhaskar, S. P.; Vijayan, M.; Jagirdar, B. R. J. Phys. Chem. C 2014, 118, 18214.
doi: 10.1021/jp505121b
Dreier, T. A.; Ackerson, C. J. Angew. Chem., Int. Ed. 2015, 54, 9249.
doi: 10.1002/anie.201502934
Samia, A. C. S.; Schlueter, J. A.; Jiang, J. S.; Bader, S. D.; Qin, C.-J.; Lin, X.-M. Chem. Mater. 2006, 18, 5203.
doi: 10.1021/cm0610579
Stoeva, S. I.; Zaikovski, V.; Prasad, B. L. V.; Stoimenov, P. K.; Sorensen, C. M.; Klabunde, K. J. Langmuir 2005, 21, 10280.
doi: 10.1021/la051699v
Mary Jacob, N.; Thomas, T. Ceramics Int. 2014, 40, 13945.
doi: 10.1016/j.ceramint.2014.05.116
Shetty, A.; Saha, A.; Makkar, M.; Viswanatha, R. Phys. Chem. Chem. Phys. 2016, 18, 25887.
doi: 10.1039/C6CP04912E
Talluri, B.; Thomas, T. Chem. Phys. Lett 2017, 685, 84.
doi: 10.1016/j.cplett.2017.07.041
Lin, M.-L.; Yang, F.; Lee, S. Colloid. Surf. A:Physicochem. Engin. Asp. 2014, 448, 16.
doi: 10.1016/j.colsurfa.2014.01.081
Yang, Z.; Klabunde, K. J.; Sorensen, C. M. J. Phys. Chem. C 2007, 111, 18143.
doi: 10.1021/jp0765751
Sidhaye, D. S.; Prasad, B. L. V. Chem. Mater. 2010, 22, 1680.
doi: 10.1021/cm9031607
Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J. Langmuir 2002, 18, 7515.
doi: 10.1021/la020181d
Sahu, P.; Shimpi, J.; Lee, H. J.; Lee, T. R.; Prasad, B. L. V. Langmuir 2017, 33, 1943.
doi: 10.1021/acs.langmuir.6b03998
Silvestri, A.; Polito, L.; Bellani, G.; Zambelli, V.; Jumde, R. P.; Psaro, R.; Evangelisti, C. J. Colloid Interf. Sci. 2015, 439, 28.
doi: 10.1016/j.jcis.2014.10.025
Naoe, K.; Petit, C.; Pileni, M. P. J. Phys. Chem. C 2007, 111, 16249.
doi: 10.1021/jp073957y
Naoe, K.; Petit, C.; Pileni, M. P. Langmuir 2008, 24, 2792.
doi: 10.1021/la702908y
Sun, Y. J.; Jose, D.; Sorensen, C.; Klabunde, K. J. Nanomaterials 2013, 3, 370.
doi: 10.3390/nano3030370
Sahu, P.; Prasad, B. L. V. Chem. Phys. Lett 2012, 525~526, 101.
Mohrhusen, L.; Osmić, M. RSC Adv. 2017, 7, 12897.
doi: 10.1039/C6RA27454D
Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 2003, 15, 935.
doi: 10.1021/cm0206439
Samia, A. C. S.; Hyzer, K.; Schlueter, J. A.; Qin, C.-J.; Jiang, J. S.; Bader, S. D.; Lin, X.-M. J. Am. Chem. Soc. 2005, 127, 4126.
doi: 10.1021/ja044419r
Kholmicheva, N.; Yang, M. R.; Moroz, P.; Eckard, H.; Vore, A.; Cassidy, J.; Pushina, M.; Boddy, A.; Porotnikov, D.; Anzenbacher, P.; Zamkov, M. J. Phys. Chem. C 2018, 122, 23623.
doi: 10.1021/acs.jpcc.8b09215
Griffin, F.; Fitzmaurice, D. Langmuir 2007, 23, 10262.
doi: 10.1021/la061261a
Su, Y. Y.; Yang, F. Q.; Lee, S. Mater. Res. Exp. 2015, 2, 055007.
doi: 10.1088/2053-1591/2/5/055007
Sahu, P.; Prasad, B. L. V. Nanoscale 2013, 5, 1768.
doi: 10.1039/C2NR32855K
Sahu, P.; Prasad, B. L. V. Langmuir 2014, 30, 10143.
doi: 10.1021/la500914j
Destro, P.; Colombo, M.; Prato, M.; Brescia, R.; Manna, L.; Zanchet, D. RSC Adv. 2016, 6, 22213.
doi: 10.1039/C6RA02027E
Lin, M. L.; Yang, F. Q.; Peng, J. S.; Lee, S. J. Appl. Phys. 2014, 115, 054312.
doi: 10.1063/1.4863784
Razgoniaeva, N.; Yang, M.; Garrett, P.; Kholmicheva, N.; Moroz, P.; Eckard, H.; Royo Romero, L.; Porotnikov, D.; Khon, D.; Zamkov, M. Chem. Mater. 2018, 30, 1391.
doi: 10.1021/acs.chemmater.7b05165
Shimpi, J. R.; Chaudhari, V. R.; Prasad, B. L. V. Langmuir 2018, 34, 13680.
doi: 10.1021/acs.langmuir.8b02699
Powell, J. A.; Schwieters, R. M.; Bayliff, K. W.; Herman, E. N.; Hotvedt, N. J.; Changstrom, J. R.; Chakrabarti, A.; Sorensen, C. M. RSC Adv. 2016, 6, 70638.
doi: 10.1039/C6RA15822F
Lohman, B. C.; Powell, J. A.; Cingarapu, S.; Aakeroy, C. B.; Chakrabarti, A.; Klabunde, K. J.; Law, B. M.; Sorensen, C. M. Phys. Chem. Chem. Phys. 2012, 14, 6509.
doi: 10.1039/c2cp40645d
Talluri, B.; Prasad, E.; Thomas, T. J. Mol. Liq. 2018, 265, 771.
doi: 10.1016/j.molliq.2018.05.069
Talluri, B.; Prasad, E.; Thomas, T. Superlatt. Microstruct. 2018, 113, 600.
doi: 10.1016/j.spmi.2017.11.044
Seth, J.; Prasad, B. L. V. Nano Res. 2016, 9, 2007.
doi: 10.1007/s12274-016-1091-0
Lee, D.-K.; Park, S.-I.; Lee, J. K.; Hwang, N.-M. Acta Mater. 2007, 55, 5281.
doi: 10.1016/j.actamat.2007.05.048
Lee, D. K.; Hwang, N. M. Scripta Mater. 2009, 61, 304.
doi: 10.1016/j.scriptamat.2009.04.008
Clark, M. D. J. Nanopart. Res. 2014, 16, 2264.
doi: 10.1007/s11051-014-2264-y
Irzhak, V. I. Russ. J. Phys. Chem. A 2017, 91, 1503.
Thomas, T.; Sethuraman, S.; Satyam, D.; Kumar, D.; Kannadasan, B.; Anderson, A.; Prashant, S.; Vijayakrishnan, R.; Khan, S.; Das, P.; Kumar, M.; Bisi, K.; Chinta, Y.; Talluri, B. Appl. Surf. Sci. 2018, 448, 248.
doi: 10.1016/j.apsusc.2018.04.134
Manzanares, J. A.; Peljo, P.; Girault, H. H. J. Phys. Chem. C 2017, 121, 13405.
doi: 10.1021/acs.jpcc.7b04234
Stoeva, S.; Klabunde, K. J.; Sorensen, C. M.; Dragieva, I. J. Am. Chem. Soc. 2002, 124, 2305.
doi: 10.1021/ja012076g
Cingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 2009, 21, 1248.
doi: 10.1021/cm802831m
Cingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. J. Nanomater. 2012, 2012, 312087.
Uppal, M. A.; Kafizas, A.; Lim, T. H.; Parkin, I. P. New J. Chem. 2010, 34, 1401.
doi: 10.1039/b9nj00745h
Sidhaye, D. S.; Prasad, B. L. V. Chem. Phys. Lett 2008, 454, 345.
doi: 10.1016/j.cplett.2008.02.053
Han, M.; Liu, S. L.; Nie, X. P.; Yuan, D.; Sun, P. P.; Dai, Z. H.; Bao, J. C. RSC Adv. 2012, 2, 6061.
doi: 10.1039/c2ra20119d
Smetana, A. B.; Klabunde, K. J.; Sorensen, C. M. J. Colloid Interf. Sci. 2005, 284, 521.
doi: 10.1016/j.jcis.2004.10.038
Zhang, Q.; Xie, J.; Yang, J.; Lee, J. Y. ACS Nano 2009, 3, 139.
doi: 10.1021/nn800531q
Li, P.; Peng, Q.; Li, Y. Chem. Eur. J. 2011, 17, 941.
doi: 10.1002/chem.v17.3
Shaik, A. H.; Chakraborty, J. RSC Adv. 2015, 5, 85974.
doi: 10.1039/C5RA16508C
Arora, N.; Jagirdar, B. R. J. Mater. Chem. 2012, 22, 20671.
doi: 10.1039/c2jm33712f
Sanyal, U.; Datta, R.; Jagirdar, B. R. RSC Adv. 2012, 2, 259.
doi: 10.1039/C1RA00468A
Kalidindi, S. B.; Jagirdar, B. R. Inorg. Chem. 2009, 48, 4524.
doi: 10.1021/ic9003577
Cingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. Inorg. Chem. 2011, 50, 5000.
doi: 10.1021/ic200232b
Naoe, K.; Kataoka, M.; Kawagoe, M. Colloid. Surf. A:Physicochem. Engin. Asp. 2010, 364, 116.
doi: 10.1016/j.colsurfa.2010.05.004
Seth, J.; Kona, C. N.; Das, S.; Prasad, B. L. V. Nanoscale 2015, 7, 872.
doi: 10.1039/C4NR04239E
Jose, D.; Jagirdar, B. R. J. Solid State Chem. 2010, 183, 2059.
doi: 10.1016/j.jssc.2010.07.013
Shankar, R.; Wu, B. B.; Bigioni, T. P. J. Phys. Chem. C 2010, 114, 15916.
doi: 10.1021/jp911316e
Jose, D.; Matthiesen, J. E.; Parsons, C.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. Lett. 2012, 3, 885.
doi: 10.1021/jz201640e
Muhammed, M. A. H.; Verma, P. K.; Pal, S. K.; Kumar, R. C. A.; Paul, S.; Omkumar, R. V.; Pradeep, T. Chem. Eur. J. 2009, 15, 10110.
doi: 10.1002/chem.v15:39
Qian, H.; Jin, R. Chem. Mater. 2011, 23, 2209.
doi: 10.1021/cm200143s
Qian, H.; Zhu, Y.; Jin, R. ACS Nano 2009, 3, 3795.
doi: 10.1021/nn901137h
Qian, H. Pure Appl. Chem. 2014, 86, 27.
doi: 10.1515/pac-2014-5011
Nimmala, P. R.; Jupally, V. R.; Dass, A. Langmuir 2014, 30, 2490.
doi: 10.1021/la404618r
Nimmala, P. R.; Dass, A. J. Am. Chem. Soc. 2014, 136, 17016.
doi: 10.1021/ja5103025
Qian, H.; Zhu, Y.; Jin, R. Proc. Nat. Acad. Sci. 2012, 109, 696.
doi: 10.1073/pnas.1115307109
Kumara, C.; Zuo, X.; Ilavsky, J.; Chapman, K. W.; Cullen, D. A.; Dass, A. J. Am. Chem. Soc. 2014, 136, 7410.
doi: 10.1021/ja502327a
Bhattacharya, C.; Arora, N.; Jagirdar, B. R. Langmuir 2019, ASAP, doi: 10.1021/acs.langmuir.1028b02208.
Jose, D.; Jagirdar, B. R. J. Phys. Chem. C 2008, 112, 10089.
doi: 10.1021/jp802721s
Liu, F.-K.; Chang, Y.-C. Chromatographia 2011, 74, 767.
doi: 10.1007/s10337-011-2139-7
Zhang, Q. B.; Xie, J. P.; Liang, J.; Lee, J. Y. Adv. Funct. Mater. 2009, 19, 1387.
doi: 10.1002/adfm.v19:9
Kalidindi, S. B.; Jagirdar, B. R. Chem. Asian J. 2009, 4, 835.
doi: 10.1002/asia.v4:6
Chen, D.; Xu, L.; Liu, H.; Yang, J. Green Energy & Environment 2019, doi:10.1016/j.gee.2018.1009.1002.
doi: 10.1016/j.gee.2018.1009.1002
Bhaskar, S. P.; Jagirdar, B. R. J. All. Comp. 2017, 694, 581.
doi: 10.1016/j.jallcom.2016.09.318
Heller, H.; Ahrenstorf, K.; Broekaert, J. A. C.; Weller, H. Phys. Chem. Chem. Phys. 2009, 11, 3257.
doi: 10.1039/b822306h
Chokprasombat, K.; Koyvanich, K.; Sirisathitkul, C.; Harding, P.; Rugmai, S. Trans. Indian Inst. Metal. 2016, 69, 733.
doi: 10.1007/s12666-015-0545-5
Smetana, A. B.; Klabunde, K. J.; Sorensen, C. M.; Ponce, A. A.; Mwale, B. J. Phys. Chem. B 2006, 110, 2155.
doi: 10.1021/jp0539932
Destro, P.; Cantaneo, D. A.; Meira, D. M.; Honorio, G. D.; da Costa, L. S.; Bueno, J. M. C.; Zanchet, D. Europ. J. Inorg. Chem. 2018, 3770.
Arora, N.; Jagirdar, B. R. Phys. Chem. Chem. Phys. 2014, 16, 11381.
doi: 10.1039/C4CP00249K
Arora, N.; Jagirdar, B. R.; Klabunde, K. J. J. All. Comp. 2014, 610, 35.
doi: 10.1016/j.jallcom.2014.04.190
Bhattacharya, C.; Jagirdar, B. R. J. Phys. Chem. C 2018, 122, 10559.
doi: 10.1021/acs.jpcc.8b00874
Uppal, M. A.; Ewing, M. B.; Parkin, I. P. Eur. J. Inorg. Chem. 2011, 2011, 4534.
doi: 10.1002/ejic.v2011.29
Shore, M. S.; Wang, J.; Johnston-Peck, A. C.; Oldenburg, A. L.; Tracy, J. B. Small 2011, 7, 230.
doi: 10.1002/smll.v7.2
Chee, S. S.; Lee, J. H. J. Mater. Chem. C 2014, 2, 5372.
doi: 10.1039/C4TC00509K
Heroux, D.; Ponce, A.; Cingarapu, S.; Klabunde, K. J. Adv. Funct. Mater. 2007, 17, 3562.
doi: 10.1002/adfm.v17:17
Jacob, N. M.; Thomas, T. RSC Adv. 2015, 5, 15154.
doi: 10.1039/C4RA05778C
Talluri, B.; Prasad, E.; Thomas, T. Superlatt. Microstruct. 2018, 116, 122.
doi: 10.1016/j.spmi.2018.02.010
Cingarapu, S.; Ikenberry, M. A.; Hamal, D. B.; Sorensen, C. M.; Hohn, K.; Klabunde, K. J. Langmuir 2012, 28, 3569.
doi: 10.1021/la203624p
Green, M.; Harwood, H.; Barrowman, C.; Rahman, P.; Eggeman, A.; Festry, F.; Dobson, P.; Ng, T. J. Mater. Chem. 2007, 17, 1989
doi: 10.1039/b615871d
Mittal, M.; Sapra, S. Pramana-J. Phys. 2015, 84, 1049.
doi: 10.1007/s12043-015-1007-7
Kalita, M.; Cingarapu, S.; Roy, S.; Park, S. C.; Higgins, D.; Jankowiak, R.; Chikan, V.; Klabunde, K. J.; Bossmann, S. H. Inorg. Chem. 2012, 51, 4521.
doi: 10.1021/ic202252m
Bhaskar, S. P.; Jagirdar, B. R. J. Chem. Sci. 2012, 124, 1175.
doi: 10.1007/s12039-012-0317-2
Kalidindi, S. B.; Jagirdar, B. R. J. Phys. Chem. C 2008, 112, 4042.
doi: 10.1021/jp7100896
Yoder, T. S.; Cloud, J. E.; Leong, G. J.; Molk, D. F.; Tussing, M.; Miorelli, J.; Ngo, C.; Kodambaka, S.; Eberhart, M. E.; Richards, R. M.; Yang, Y. Chem. Mater. 2014, 26, 6743.
doi: 10.1021/cm5030553
Jeong, J.; Kim, N.; Kim, M. G.; Kim, W. Chem. Mater. 2016, 28, 172.
doi: 10.1021/acs.chemmater.5b03616
Shaikh, P. A.; Banerjee, A.; Game, O.; Kolekar, Y.; Kale, S.; Ogale, S. Phys. Chem. Chem. Phys. 2013, 15, 5091.
doi: 10.1039/c3cp43425g
Bhaskar, S. P.; Karthika, M. S.; Jagirdar, B. R. Chemistryselect 2018, 3, 6638.
doi: 10.1002/slct.201801157
Schultz, D. G.; Lin, X.-M.; Li, D.; Gebhardt, J.; Meron, M.; Viccaro, J.; Lin, B. J. Phys. Chem. B 2006, 110, 24522.
doi: 10.1021/jp063820s
Griesemer, S. D.; You, S. S.; Kanjanaboos, P.; Calabro, M.; Jaeger, H. M.; Rice, S. A.; Lin, B. Soft Matter 2017, 13, 3125.
doi: 10.1039/C7SM00319F
Shaik, A. H.; Reddy, D. S. Mater. Res. Exp. 2017, 4, 035043.
doi: 10.1088/2053-1591/aa5e5b
He, J.; Lin, X.-M.; Divan, R.; Jaeger, H. M. Small 2011, 7, 3487.
doi: 10.1002/smll.v7.24
He, J.; Lin, X.-M.; Chan, H.; Vuković, L.; Král, P.; Jaeger, H. M. Nano Lett. 2011, 11, 2430.
doi: 10.1021/nl200841a
Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Kagan, C. R.; Murray, C. B. Nat. Mater. 2007, 6, 115.
doi: 10.1038/nmat1826
Ye, X.; Chen, J.; Murray, C. B. J. Am. Chem. Soc. 2011, 133, 2613.
doi: 10.1021/ja108708v
García-Barrasa, J.; López-de-Luzuriaga, J. M.; Monge, M.; Soulantica, K.; Viau, G. J. Nanopart. Res. 2011, 13, 791.
doi: 10.1007/s11051-010-0079-z
Stoeva, S. I.; Prasad, B. L. V.; Uma, S.; Stoimenov, P. K.; Zaikovski, V.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B 2003, 107, 7441.
doi: 10.1021/jp030013+
He, J.; Kanjanaboos, P.; Frazer, N. L.; Weis, A.; Lin, X.-M.; Jaeger, H. M. Small 2010, 6, 1449.
doi: 10.1002/smll.v6:13
Wang, Y.; Chan, H.; Narayanan, B.; McBride, S. P.; Sankaranarayanan, S. K. R. S.; Lin, X.-M.; Jaeger, H. M. ACS Nano 2017, 11, 8026.
doi: 10.1021/acsnano.7b02676
Wang, Y.; Kanjanaboos, P.; Barry, E.; McBride, S.; Lin, X.-M.; Jaeger, H. M. Nano Lett. 2010, 14, 826.
Lin, X. M.; Jaeger, H. M.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B 2001, 105, 3353.
doi: 10.1021/jp0102062
Zhu, B.; Gong, S.; Cheng, W. Chem. Soc. Rev. 2019, doi:10.1039/C1038CS00609A.
doi: 10.1039/C1038CS00609A
Kagan, C. R. Chem. Soc. Rev. 2019, doi:10.1039/C1038CS00629F.
doi: 10.1039/C1038CS00629F
Boles, M. A.; Engel, M.; Talapin, D. V. Chem. Rev. 2016, 116, 11220.
doi: 10.1021/acs.chemrev.6b00196
Ortega, S.; Ibáñez, M.; Liu, Y.; Zhang, Y.; Kovalenko, M. V.; Cadavid, D.; Cabot, A. Chem. Soc. Rev. 2017, 46, 3510.
doi: 10.1039/C6CS00567E
Wang, Y.; Wang, M.; Li, J.; Wei, Z. Acta Chim. Sinica 2019, 77, 84.
Li, N. Chin. J. Chem. 2016, 34, 1129.
doi: 10.1002/cjoc.v34.11
Cao, J.; Zhu, Z.; Zhao, W.; Xu, J.; Chen, Z. Chin. J. Chem. 2016, 34, 1086.
doi: 10.1002/cjoc.v34.11
Scanlon, M. D.; Smirnov, E.; Stockmann, T. J.; Peljo, P. Chem. Rev. 2018, 118, 3722.
doi: 10.1021/acs.chemrev.7b00595
Seth, J.; Dubey, P.; Chaudhari, V. R.; Prasad, B. L. V. New J. Chem. 2018, 42, 402.
doi: 10.1039/C7NJ03753H
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017