Citation: Li Dongxiang, Gao Yuanyuan, Zhang Xiaofang, Xia Haibing. Digestive Ripening at Nanoscale and Its Application in the Preparation of Monodisperse Nanomaterials[J]. Acta Chimica Sinica, ;2019, 77(4): 305-315. doi: 10.6023/A18120512 shu

Digestive Ripening at Nanoscale and Its Application in the Preparation of Monodisperse Nanomaterials

  • Corresponding author: Li Dongxiang, lidx@qust.edu.cn Xia Haibing, hbxia@sdu.edu.cn
  • Received Date: 25 December 2018
    Available Online: 28 April 2019

    Fund Project: Project supported by the Shandong Provincial Natural Science Foundation (No. ZR2017MB042) and Qingdao University of Science and Technology, Division of Chemistry (No. QUSTHX201812)the Shandong Provincial Natural Science Foundation ZR2017MB042Qingdao University of Science and Technology, Division of Chemistry QUSTHX201812

Figures(10)

  • Recently, a digestive ripening process at nanoscale has been widely used to prepare monodisperse nanoparticles (NPs), especially for sub-10 nm small NPs, with significant advantages such as the very narrow size distribution of the obtained nanoparticles, the versatile applications for various nanoparticles and the simple operation process. However, no Chinese references are reported on digestive ripening process till now, which may limit the cognition and utility of digestive ripening method for some domestic scientists. Thus, this review starts from the discovery of the phenomenon and the proposal of mechanism for digestive ripening at nanoscale, to the analysis of influence factors including the precursor in the precipitation reaction, the digestive ripening reagent, heating treatment temperature and processing time, solvent media and so on. Then, theoretical hypothesis and the derived results are introduced based on the charged surface, the curvature effect, the interaction between NP surface and attached ligand layer, the diffusion effect and the competing reaction balance in the digestive ripening process. Subsequently, the important applications of digestive ripening method in the preparation of monodisperse nanomaterials of metal NPs, alloy NPs, quantum dots of metal oxide and metal chalcogenide, and other NPs are discussed, the obtained small metal or alloy NPs show a perfect sphere shape and a very narrow size distribution (relative standard deviation less than ±5%). Finally, the broad perspectives are proposed in the NP assembly for optical, electric and magnetic nanodevices, and the heterogeneous catalysis of monodisperse metal, alloy and semiconducotr NPs via the digestive ripening method.
  • 加载中
    1. [1]

      Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Angew. Chem., Int. Ed. 2007, 46, 4630.  doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Yan, Y.; Li, J.; Yang, Y. Prog. Chem. 2009, 21, 971.
       

    3. [3]

      Shi, R.; Gao, G.; Yi, R.; Zhou, K.; Qiu, G.; Liu, X. Chin. J. Chem. 2009, 27, 739.  doi: 10.1002/cjoc.v27:4

    4. [4]

      Ji, X. H.; Song, X. N.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G. J. Am. Chem. Soc. 2007, 129, 13939.  doi: 10.1021/ja074447k

    5. [5]

      Li, H. S.; Xia, H. B.; Wang, D. Y.; Tao, X. T. Langmuir 2013, 29, 5074.  doi: 10.1021/la400214x

    6. [6]

      Fu, Y.; Du, Y.; Yang, P.; Li, J.; Jiang, L. Sci. China B:Chem. 2007, 50, 494.  doi: 10.1007/s11426-007-0085-x

    7. [7]

      Liu, N.; Wang, K.; Gao, Y. Y.; Li, D. X.; Lin, W. H.; Li, C. F. Colloid. Surf. A:Physicochem. Engin. Asp. 2017, 535, 251.  doi: 10.1016/j.colsurfa.2017.09.017

    8. [8]

      Li, C. F.; Li, D. X.; Wan, G. Q.; Xu, J.; Hou, W. G. Nanoscale Res. Lett. 2011, 6, 440.  doi: 10.1186/1556-276X-6-440

    9. [9]

      Zaiser, E. M.; LaMer, V. K. J. Colloid Sci. 1948, 3, 571.  doi: 10.1016/S0095-8522(48)90050-6

    10. [10]

      LaMer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847.  doi: 10.1021/ja01167a001

    11. [11]

      Zhang, P. N.; Li, Y. J.; Wang, D. Y.; Xia, H. B. Particle Particle Sys. Character. 2016, 33, 924.  doi: 10.1002/ppsc.v33.12

    12. [12]

      Li, D. X.; Jang, Y. J.; Lee, J.; Lee, J. E.; Kochuveedu, S. T.; Kim, D. H. J. Mater. Chem. 2011, 21, 16453.  doi: 10.1039/c1jm13302k

    13. [13]

      Ostwald, W. Zeitsch. Phys. Chem. 1897, 22, 289.

    14. [14]

      Zhang, Z.; Wang, Z.; He, S.; Wang, C.; Jin, M.; Yin, Y. Chem. Sci. 2015, 6, 5197.  doi: 10.1039/C5SC01787D

    15. [15]

      Lin, X. M.; Sorensen, C. M.; Klabunde, K. J. J. Nanopart. Res. 2000, 2, 157.  doi: 10.1023/A:1010078521951

    16. [16]

      Shimpi, J. R.; Sidhaye, D. S.; Prasad, B. L. V. Langmuir 2017, 33, 9491.  doi: 10.1021/acs.langmuir.7b00193

    17. [17]

      Sidhaye, D. S.; Prasad, B. L. V. New J. Chem. 2011, 35, 755.  doi: 10.1039/C0NJ00359J

    18. [18]

      Yang, Y.; Gong, X.; Zeng, H.; Zhang, L.; Zhang, X.; Zou, C.; Huang, S. J. Phys. Chem. C 2010, 114, 256.  doi: 10.1021/jp909065y

    19. [19]

      Ji, Y.; Yang, S.; Guo, S.; Song, X.; Ding, B.; Yang, Z. Colloid. Surf. A:Physicochem. Engin. Asp. 2010, 372, 204.  doi: 10.1016/j.colsurfa.2010.10.028

    20. [20]

      Liu, S. L.; Han, M.; Shi, Y.; Zhang, C. Z.; Chen, Y.; Bao, J. C.; Dai, Z. H. Europ. J. Inorg. Chem. 2012, 3740.

    21. [21]

      Zhang, S.; Zhang, L.; Liu, K.; Liu, M.; Yin, Y.; Gao, C. Mater. Chem. Front. 2018, 2, 1328.  doi: 10.1039/C8QM00077H

    22. [22]

      Wang, P.; Qi, X.; Zhang, X.; Wang, T.; Li, Y.; Zhang, K.; Zhao, S.; Zhou, J.; Fu, Y. Nanoscale Res. Lett. 2017, 12, 25.  doi: 10.1186/s11671-016-1797-7

    23. [23]

      Cardenas-Trivino, G.; Klabunde, K. J.; Dale, E. B. Langmuir 1987, 3, 986.  doi: 10.1021/la00078a019

    24. [24]

      Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801.

    25. [25]

      Leff, D. V.; Ohara, P. C.; Heath, J. R.; Gelbart, W. M. J. Phys. Chem. 1995, 99, 7036.  doi: 10.1021/j100018a041

    26. [26]

      Lin, X. M.; Wang, G. M.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B 1999, 103, 5488.  doi: 10.1021/jp990729y

    27. [27]

      Lin, X. M.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 1999, 11, 198.  doi: 10.1021/cm980665o

    28. [28]

      Bhaskar, S. P.; Vijayan, M.; Jagirdar, B. R. J. Phys. Chem. C 2014, 118, 18214.  doi: 10.1021/jp505121b

    29. [29]

      Dreier, T. A.; Ackerson, C. J. Angew. Chem., Int. Ed. 2015, 54, 9249.  doi: 10.1002/anie.201502934

    30. [30]

      Samia, A. C. S.; Schlueter, J. A.; Jiang, J. S.; Bader, S. D.; Qin, C.-J.; Lin, X.-M. Chem. Mater. 2006, 18, 5203.  doi: 10.1021/cm0610579

    31. [31]

      Stoeva, S. I.; Zaikovski, V.; Prasad, B. L. V.; Stoimenov, P. K.; Sorensen, C. M.; Klabunde, K. J. Langmuir 2005, 21, 10280.  doi: 10.1021/la051699v

    32. [32]

      Mary Jacob, N.; Thomas, T. Ceramics Int. 2014, 40, 13945.  doi: 10.1016/j.ceramint.2014.05.116

    33. [33]

      Shetty, A.; Saha, A.; Makkar, M.; Viswanatha, R. Phys. Chem. Chem. Phys. 2016, 18, 25887.  doi: 10.1039/C6CP04912E

    34. [34]

      Talluri, B.; Thomas, T. Chem. Phys. Lett 2017, 685, 84.  doi: 10.1016/j.cplett.2017.07.041

    35. [35]

      Lin, M.-L.; Yang, F.; Lee, S. Colloid. Surf. A:Physicochem. Engin. Asp. 2014, 448, 16.  doi: 10.1016/j.colsurfa.2014.01.081

    36. [36]

      Yang, Z.; Klabunde, K. J.; Sorensen, C. M. J. Phys. Chem. C 2007, 111, 18143.  doi: 10.1021/jp0765751

    37. [37]

      Sidhaye, D. S.; Prasad, B. L. V. Chem. Mater. 2010, 22, 1680.  doi: 10.1021/cm9031607

    38. [38]

      Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J. Langmuir 2002, 18, 7515.  doi: 10.1021/la020181d

    39. [39]

      Sahu, P.; Shimpi, J.; Lee, H. J.; Lee, T. R.; Prasad, B. L. V. Langmuir 2017, 33, 1943.  doi: 10.1021/acs.langmuir.6b03998

    40. [40]

      Silvestri, A.; Polito, L.; Bellani, G.; Zambelli, V.; Jumde, R. P.; Psaro, R.; Evangelisti, C. J. Colloid Interf. Sci. 2015, 439, 28.  doi: 10.1016/j.jcis.2014.10.025

    41. [41]

      Naoe, K.; Petit, C.; Pileni, M. P. J. Phys. Chem. C 2007, 111, 16249.  doi: 10.1021/jp073957y

    42. [42]

      Naoe, K.; Petit, C.; Pileni, M. P. Langmuir 2008, 24, 2792.  doi: 10.1021/la702908y

    43. [43]

      Sun, Y. J.; Jose, D.; Sorensen, C.; Klabunde, K. J. Nanomaterials 2013, 3, 370.  doi: 10.3390/nano3030370

    44. [44]

      Sahu, P.; Prasad, B. L. V. Chem. Phys. Lett 2012, 525~526, 101.

    45. [45]

      Mohrhusen, L.; Osmić, M. RSC Adv. 2017, 7, 12897.  doi: 10.1039/C6RA27454D

    46. [46]

      Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 2003, 15, 935.  doi: 10.1021/cm0206439

    47. [47]

      Samia, A. C. S.; Hyzer, K.; Schlueter, J. A.; Qin, C.-J.; Jiang, J. S.; Bader, S. D.; Lin, X.-M. J. Am. Chem. Soc. 2005, 127, 4126.  doi: 10.1021/ja044419r

    48. [48]

      Kholmicheva, N.; Yang, M. R.; Moroz, P.; Eckard, H.; Vore, A.; Cassidy, J.; Pushina, M.; Boddy, A.; Porotnikov, D.; Anzenbacher, P.; Zamkov, M. J. Phys. Chem. C 2018, 122, 23623.  doi: 10.1021/acs.jpcc.8b09215

    49. [49]

      Griffin, F.; Fitzmaurice, D. Langmuir 2007, 23, 10262.  doi: 10.1021/la061261a

    50. [50]

      Su, Y. Y.; Yang, F. Q.; Lee, S. Mater. Res. Exp. 2015, 2, 055007.  doi: 10.1088/2053-1591/2/5/055007

    51. [51]

      Sahu, P.; Prasad, B. L. V. Nanoscale 2013, 5, 1768.  doi: 10.1039/C2NR32855K

    52. [52]

      Sahu, P.; Prasad, B. L. V. Langmuir 2014, 30, 10143.  doi: 10.1021/la500914j

    53. [53]

      Destro, P.; Colombo, M.; Prato, M.; Brescia, R.; Manna, L.; Zanchet, D. RSC Adv. 2016, 6, 22213.  doi: 10.1039/C6RA02027E

    54. [54]

      Lin, M. L.; Yang, F. Q.; Peng, J. S.; Lee, S. J. Appl. Phys. 2014, 115, 054312.  doi: 10.1063/1.4863784

    55. [55]

      Razgoniaeva, N.; Yang, M.; Garrett, P.; Kholmicheva, N.; Moroz, P.; Eckard, H.; Royo Romero, L.; Porotnikov, D.; Khon, D.; Zamkov, M. Chem. Mater. 2018, 30, 1391.  doi: 10.1021/acs.chemmater.7b05165

    56. [56]

      Shimpi, J. R.; Chaudhari, V. R.; Prasad, B. L. V. Langmuir 2018, 34, 13680.  doi: 10.1021/acs.langmuir.8b02699

    57. [57]

      Powell, J. A.; Schwieters, R. M.; Bayliff, K. W.; Herman, E. N.; Hotvedt, N. J.; Changstrom, J. R.; Chakrabarti, A.; Sorensen, C. M. RSC Adv. 2016, 6, 70638.  doi: 10.1039/C6RA15822F

    58. [58]

      Lohman, B. C.; Powell, J. A.; Cingarapu, S.; Aakeroy, C. B.; Chakrabarti, A.; Klabunde, K. J.; Law, B. M.; Sorensen, C. M. Phys. Chem. Chem. Phys. 2012, 14, 6509.  doi: 10.1039/c2cp40645d

    59. [59]

      Talluri, B.; Prasad, E.; Thomas, T. J. Mol. Liq. 2018, 265, 771.  doi: 10.1016/j.molliq.2018.05.069

    60. [60]

      Talluri, B.; Prasad, E.; Thomas, T. Superlatt. Microstruct. 2018, 113, 600.  doi: 10.1016/j.spmi.2017.11.044

    61. [61]

      Seth, J.; Prasad, B. L. V. Nano Res. 2016, 9, 2007.  doi: 10.1007/s12274-016-1091-0

    62. [62]

      Lee, D.-K.; Park, S.-I.; Lee, J. K.; Hwang, N.-M. Acta Mater. 2007, 55, 5281.  doi: 10.1016/j.actamat.2007.05.048

    63. [63]

      Lee, D. K.; Hwang, N. M. Scripta Mater. 2009, 61, 304.  doi: 10.1016/j.scriptamat.2009.04.008

    64. [64]

      Clark, M. D. J. Nanopart. Res. 2014, 16, 2264.  doi: 10.1007/s11051-014-2264-y

    65. [65]

      Irzhak, V. I. Russ. J. Phys. Chem. A 2017, 91, 1503.

    66. [66]

      Thomas, T.; Sethuraman, S.; Satyam, D.; Kumar, D.; Kannadasan, B.; Anderson, A.; Prashant, S.; Vijayakrishnan, R.; Khan, S.; Das, P.; Kumar, M.; Bisi, K.; Chinta, Y.; Talluri, B. Appl. Surf. Sci. 2018, 448, 248.  doi: 10.1016/j.apsusc.2018.04.134

    67. [67]

      Manzanares, J. A.; Peljo, P.; Girault, H. H. J. Phys. Chem. C 2017, 121, 13405.  doi: 10.1021/acs.jpcc.7b04234

    68. [68]

      Stoeva, S.; Klabunde, K. J.; Sorensen, C. M.; Dragieva, I. J. Am. Chem. Soc. 2002, 124, 2305.  doi: 10.1021/ja012076g

    69. [69]

      Cingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 2009, 21, 1248.  doi: 10.1021/cm802831m

    70. [70]

      Cingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. J. Nanomater. 2012, 2012, 312087.

    71. [71]

      Uppal, M. A.; Kafizas, A.; Lim, T. H.; Parkin, I. P. New J. Chem. 2010, 34, 1401.  doi: 10.1039/b9nj00745h

    72. [72]

      Sidhaye, D. S.; Prasad, B. L. V. Chem. Phys. Lett 2008, 454, 345.  doi: 10.1016/j.cplett.2008.02.053

    73. [73]

      Han, M.; Liu, S. L.; Nie, X. P.; Yuan, D.; Sun, P. P.; Dai, Z. H.; Bao, J. C. RSC Adv. 2012, 2, 6061.  doi: 10.1039/c2ra20119d

    74. [74]

      Smetana, A. B.; Klabunde, K. J.; Sorensen, C. M. J. Colloid Interf. Sci. 2005, 284, 521.  doi: 10.1016/j.jcis.2004.10.038

    75. [75]

      Zhang, Q.; Xie, J.; Yang, J.; Lee, J. Y. ACS Nano 2009, 3, 139.  doi: 10.1021/nn800531q

    76. [76]

      Li, P.; Peng, Q.; Li, Y. Chem. Eur. J. 2011, 17, 941.  doi: 10.1002/chem.v17.3

    77. [77]

      Shaik, A. H.; Chakraborty, J. RSC Adv. 2015, 5, 85974.  doi: 10.1039/C5RA16508C

    78. [78]

      Arora, N.; Jagirdar, B. R. J. Mater. Chem. 2012, 22, 20671.  doi: 10.1039/c2jm33712f

    79. [79]

      Sanyal, U.; Datta, R.; Jagirdar, B. R. RSC Adv. 2012, 2, 259.  doi: 10.1039/C1RA00468A

    80. [80]

      Kalidindi, S. B.; Jagirdar, B. R. Inorg. Chem. 2009, 48, 4524.  doi: 10.1021/ic9003577

    81. [81]

      Cingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. Inorg. Chem. 2011, 50, 5000.  doi: 10.1021/ic200232b

    82. [82]

      Naoe, K.; Kataoka, M.; Kawagoe, M. Colloid. Surf. A:Physicochem. Engin. Asp. 2010, 364, 116.  doi: 10.1016/j.colsurfa.2010.05.004

    83. [83]

      Seth, J.; Kona, C. N.; Das, S.; Prasad, B. L. V. Nanoscale 2015, 7, 872.  doi: 10.1039/C4NR04239E

    84. [84]

      Jose, D.; Jagirdar, B. R. J. Solid State Chem. 2010, 183, 2059.  doi: 10.1016/j.jssc.2010.07.013

    85. [85]

      Shankar, R.; Wu, B. B.; Bigioni, T. P. J. Phys. Chem. C 2010, 114, 15916.  doi: 10.1021/jp911316e

    86. [86]

      Jose, D.; Matthiesen, J. E.; Parsons, C.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. Lett. 2012, 3, 885.  doi: 10.1021/jz201640e

    87. [87]

      Muhammed, M. A. H.; Verma, P. K.; Pal, S. K.; Kumar, R. C. A.; Paul, S.; Omkumar, R. V.; Pradeep, T. Chem. Eur. J. 2009, 15, 10110.  doi: 10.1002/chem.v15:39

    88. [88]

      Qian, H.; Jin, R. Chem. Mater. 2011, 23, 2209.  doi: 10.1021/cm200143s

    89. [89]

      Qian, H.; Zhu, Y.; Jin, R. ACS Nano 2009, 3, 3795.  doi: 10.1021/nn901137h

    90. [90]

      Qian, H. Pure Appl. Chem. 2014, 86, 27.  doi: 10.1515/pac-2014-5011

    91. [91]

      Nimmala, P. R.; Jupally, V. R.; Dass, A. Langmuir 2014, 30, 2490.  doi: 10.1021/la404618r

    92. [92]

      Nimmala, P. R.; Dass, A. J. Am. Chem. Soc. 2014, 136, 17016.  doi: 10.1021/ja5103025

    93. [93]

      Qian, H.; Zhu, Y.; Jin, R. Proc. Nat. Acad. Sci. 2012, 109, 696.  doi: 10.1073/pnas.1115307109

    94. [94]

      Kumara, C.; Zuo, X.; Ilavsky, J.; Chapman, K. W.; Cullen, D. A.; Dass, A. J. Am. Chem. Soc. 2014, 136, 7410.  doi: 10.1021/ja502327a

    95. [95]

      Bhattacharya, C.; Arora, N.; Jagirdar, B. R. Langmuir 2019, ASAP, doi: 10.1021/acs.langmuir.1028b02208.

    96. [96]

      Jose, D.; Jagirdar, B. R. J. Phys. Chem. C 2008, 112, 10089.  doi: 10.1021/jp802721s

    97. [97]

      Liu, F.-K.; Chang, Y.-C. Chromatographia 2011, 74, 767.  doi: 10.1007/s10337-011-2139-7

    98. [98]

      Zhang, Q. B.; Xie, J. P.; Liang, J.; Lee, J. Y. Adv. Funct. Mater. 2009, 19, 1387.  doi: 10.1002/adfm.v19:9

    99. [99]

      Kalidindi, S. B.; Jagirdar, B. R. Chem. Asian J. 2009, 4, 835.  doi: 10.1002/asia.v4:6

    100. [100]

      Chen, D.; Xu, L.; Liu, H.; Yang, J. Green Energy & Environment 2019, doi:10.1016/j.gee.2018.1009.1002.  doi: 10.1016/j.gee.2018.1009.1002

    101. [101]

      Bhaskar, S. P.; Jagirdar, B. R. J. All. Comp. 2017, 694, 581.  doi: 10.1016/j.jallcom.2016.09.318

    102. [102]

      Heller, H.; Ahrenstorf, K.; Broekaert, J. A. C.; Weller, H. Phys. Chem. Chem. Phys. 2009, 11, 3257.  doi: 10.1039/b822306h

    103. [103]

      Chokprasombat, K.; Koyvanich, K.; Sirisathitkul, C.; Harding, P.; Rugmai, S. Trans. Indian Inst. Metal. 2016, 69, 733.  doi: 10.1007/s12666-015-0545-5

    104. [104]

      Smetana, A. B.; Klabunde, K. J.; Sorensen, C. M.; Ponce, A. A.; Mwale, B. J. Phys. Chem. B 2006, 110, 2155.  doi: 10.1021/jp0539932

    105. [105]

      Destro, P.; Cantaneo, D. A.; Meira, D. M.; Honorio, G. D.; da Costa, L. S.; Bueno, J. M. C.; Zanchet, D. Europ. J. Inorg. Chem. 2018, 3770.

    106. [106]

      Arora, N.; Jagirdar, B. R. Phys. Chem. Chem. Phys. 2014, 16, 11381.  doi: 10.1039/C4CP00249K

    107. [107]

      Arora, N.; Jagirdar, B. R.; Klabunde, K. J. J. All. Comp. 2014, 610, 35.  doi: 10.1016/j.jallcom.2014.04.190

    108. [108]

      Bhattacharya, C.; Jagirdar, B. R. J. Phys. Chem. C 2018, 122, 10559.  doi: 10.1021/acs.jpcc.8b00874

    109. [109]

      Uppal, M. A.; Ewing, M. B.; Parkin, I. P. Eur. J. Inorg. Chem. 2011, 2011, 4534.  doi: 10.1002/ejic.v2011.29

    110. [110]

      Shore, M. S.; Wang, J.; Johnston-Peck, A. C.; Oldenburg, A. L.; Tracy, J. B. Small 2011, 7, 230.  doi: 10.1002/smll.v7.2

    111. [111]

      Chee, S. S.; Lee, J. H. J. Mater. Chem. C 2014, 2, 5372.  doi: 10.1039/C4TC00509K

    112. [112]

      Heroux, D.; Ponce, A.; Cingarapu, S.; Klabunde, K. J. Adv. Funct. Mater. 2007, 17, 3562.  doi: 10.1002/adfm.v17:17

    113. [113]

      Jacob, N. M.; Thomas, T. RSC Adv. 2015, 5, 15154.  doi: 10.1039/C4RA05778C

    114. [114]

      Talluri, B.; Prasad, E.; Thomas, T. Superlatt. Microstruct. 2018, 116, 122.  doi: 10.1016/j.spmi.2018.02.010

    115. [115]

      Cingarapu, S.; Ikenberry, M. A.; Hamal, D. B.; Sorensen, C. M.; Hohn, K.; Klabunde, K. J. Langmuir 2012, 28, 3569.  doi: 10.1021/la203624p

    116. [116]

      Green, M.; Harwood, H.; Barrowman, C.; Rahman, P.; Eggeman, A.; Festry, F.; Dobson, P.; Ng, T. J. Mater. Chem. 2007, 17, 1989  doi: 10.1039/b615871d

    117. [117]

      Mittal, M.; Sapra, S. Pramana-J. Phys. 2015, 84, 1049.  doi: 10.1007/s12043-015-1007-7

    118. [118]

      Kalita, M.; Cingarapu, S.; Roy, S.; Park, S. C.; Higgins, D.; Jankowiak, R.; Chikan, V.; Klabunde, K. J.; Bossmann, S. H. Inorg. Chem. 2012, 51, 4521.  doi: 10.1021/ic202252m

    119. [119]

      Bhaskar, S. P.; Jagirdar, B. R. J. Chem. Sci. 2012, 124, 1175.  doi: 10.1007/s12039-012-0317-2

    120. [120]

      Kalidindi, S. B.; Jagirdar, B. R. J. Phys. Chem. C 2008, 112, 4042.  doi: 10.1021/jp7100896

    121. [121]

      Yoder, T. S.; Cloud, J. E.; Leong, G. J.; Molk, D. F.; Tussing, M.; Miorelli, J.; Ngo, C.; Kodambaka, S.; Eberhart, M. E.; Richards, R. M.; Yang, Y. Chem. Mater. 2014, 26, 6743.  doi: 10.1021/cm5030553

    122. [122]

      Jeong, J.; Kim, N.; Kim, M. G.; Kim, W. Chem. Mater. 2016, 28, 172.  doi: 10.1021/acs.chemmater.5b03616

    123. [123]

      Shaikh, P. A.; Banerjee, A.; Game, O.; Kolekar, Y.; Kale, S.; Ogale, S. Phys. Chem. Chem. Phys. 2013, 15, 5091.  doi: 10.1039/c3cp43425g

    124. [124]

      Bhaskar, S. P.; Karthika, M. S.; Jagirdar, B. R. Chemistryselect 2018, 3, 6638.  doi: 10.1002/slct.201801157

    125. [125]

      Schultz, D. G.; Lin, X.-M.; Li, D.; Gebhardt, J.; Meron, M.; Viccaro, J.; Lin, B. J. Phys. Chem. B 2006, 110, 24522.  doi: 10.1021/jp063820s

    126. [126]

      Griesemer, S. D.; You, S. S.; Kanjanaboos, P.; Calabro, M.; Jaeger, H. M.; Rice, S. A.; Lin, B. Soft Matter 2017, 13, 3125.  doi: 10.1039/C7SM00319F

    127. [127]

      Shaik, A. H.; Reddy, D. S. Mater. Res. Exp. 2017, 4, 035043.  doi: 10.1088/2053-1591/aa5e5b

    128. [128]

      He, J.; Lin, X.-M.; Divan, R.; Jaeger, H. M. Small 2011, 7, 3487.  doi: 10.1002/smll.v7.24

    129. [129]

      He, J.; Lin, X.-M.; Chan, H.; Vuković, L.; Král, P.; Jaeger, H. M. Nano Lett. 2011, 11, 2430.  doi: 10.1021/nl200841a

    130. [130]

      Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Kagan, C. R.; Murray, C. B. Nat. Mater. 2007, 6, 115.  doi: 10.1038/nmat1826

    131. [131]

      Ye, X.; Chen, J.; Murray, C. B. J. Am. Chem. Soc. 2011, 133, 2613.  doi: 10.1021/ja108708v

    132. [132]

      García-Barrasa, J.; López-de-Luzuriaga, J. M.; Monge, M.; Soulantica, K.; Viau, G. J. Nanopart. Res. 2011, 13, 791.  doi: 10.1007/s11051-010-0079-z

    133. [133]

      Stoeva, S. I.; Prasad, B. L. V.; Uma, S.; Stoimenov, P. K.; Zaikovski, V.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B 2003, 107, 7441.  doi: 10.1021/jp030013+

    134. [134]

      He, J.; Kanjanaboos, P.; Frazer, N. L.; Weis, A.; Lin, X.-M.; Jaeger, H. M. Small 2010, 6, 1449.  doi: 10.1002/smll.v6:13

    135. [135]

      Wang, Y.; Chan, H.; Narayanan, B.; McBride, S. P.; Sankaranarayanan, S. K. R. S.; Lin, X.-M.; Jaeger, H. M. ACS Nano 2017, 11, 8026.  doi: 10.1021/acsnano.7b02676

    136. [136]

      Wang, Y.; Kanjanaboos, P.; Barry, E.; McBride, S.; Lin, X.-M.; Jaeger, H. M. Nano Lett. 2010, 14, 826.

    137. [137]

      Lin, X. M.; Jaeger, H. M.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B 2001, 105, 3353.  doi: 10.1021/jp0102062

    138. [138]

      Zhu, B.; Gong, S.; Cheng, W. Chem. Soc. Rev. 2019, doi:10.1039/C1038CS00609A.  doi: 10.1039/C1038CS00609A

    139. [139]

      Kagan, C. R. Chem. Soc. Rev. 2019, doi:10.1039/C1038CS00629F.  doi: 10.1039/C1038CS00629F

    140. [140]

      Boles, M. A.; Engel, M.; Talapin, D. V. Chem. Rev. 2016, 116, 11220.  doi: 10.1021/acs.chemrev.6b00196

    141. [141]

      Ortega, S.; Ibáñez, M.; Liu, Y.; Zhang, Y.; Kovalenko, M. V.; Cadavid, D.; Cabot, A. Chem. Soc. Rev. 2017, 46, 3510.  doi: 10.1039/C6CS00567E

    142. [142]

      Wang, Y.; Wang, M.; Li, J.; Wei, Z. Acta Chim. Sinica 2019, 77, 84.
       

    143. [143]

      Li, N. Chin. J. Chem. 2016, 34, 1129.  doi: 10.1002/cjoc.v34.11

    144. [144]

      Cao, J.; Zhu, Z.; Zhao, W.; Xu, J.; Chen, Z. Chin. J. Chem. 2016, 34, 1086.  doi: 10.1002/cjoc.v34.11

    145. [145]

      Scanlon, M. D.; Smirnov, E.; Stockmann, T. J.; Peljo, P. Chem. Rev. 2018, 118, 3722.  doi: 10.1021/acs.chemrev.7b00595

    146. [146]

      Seth, J.; Dubey, P.; Chaudhari, V. R.; Prasad, B. L. V. New J. Chem. 2018, 42, 402.  doi: 10.1039/C7NJ03753H

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    14. [14]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    15. [15]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    18. [18]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

Metrics
  • PDF Downloads(51)
  • Abstract views(2909)
  • HTML views(535)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return