Citation: Chen Kai, Han Baichuan, Ji Sixin, Sun Jin, Gao Zhenzhong, Hou Xianfeng. A Ratiometric Fluorescence Probe for Detecting Gaseous Isocyanates Directly[J]. Acta Chimica Sinica, ;2019, 77(4): 365-370. doi: 10.6023/A18120484 shu

A Ratiometric Fluorescence Probe for Detecting Gaseous Isocyanates Directly

  • Corresponding author: Gao Zhenzhong, zzgaoscau@163.com Hou Xianfeng, xfhou@scau.edu.cn
  • Received Date: 4 December 2018
    Available Online: 1 May 2019

    Fund Project: the Guangzhou Science and Technology Plan 201803030031the Natural Science Foundation of Guangdong Province, China 2018A030310348Project supported by the Natural Science Foundation of Guangdong Province, China (No. 2018A030310348), and the Guangzhou Science and Technology Plan (No. 201803030031)

Figures(4)

  • Isocyanates is a widely-used chemical in many manufacturing industries, such as polymer industry, pharmaceutical production and production of a variety of agricultural chemicals. However, it is harmful to human health due to the volatility. Therefore, it is necessary to develop methods to detect isocyanates quickly and conveniently, especially to gaseous isocyanates. In this work, a novel fluorescent probe, N-buty-4-hydroxy-1, 8naphthalimide, was developed for detection of isocyanates. This fluorescence probe can be synthesized by a simple three-steps synthetic route, and the overall yield of the whole synthesizing process reached 75%. In the absence of isocyanate, the probe solution displays an emission centering at 596 nm when excited at 370 nm, which is yellow to the naked eye. Once isocyanate is added, the fluorescence of solution changes from yellow to blue, and the process finishes in 4 min. The detecting limit of this probe to isocyanates is calculated to be 112 nmol·L-1. It is also proved that this probe possesses excellent selectivity for isocyanate and distinct anti-interference to common organic volatilized compounds. In addition, the reaction mechanism between the probe and isocyanate were proved by HPLC, NMR and ESI-MASS. Results show that the hydroxy group on the 4th position of naphthalene ring of probe reacts with isocyanate group (-NCO) of isocyanate, and resulting in carbamates, which alter 4th substituent group of probe molecule and lead to change of fluorescence. In order to detect the gaseous isocyanates directly, test paper are developed based on N-buty-4-hydroxy-1, 8naphthalimide. When the test paper exposed to isocyanates vapor, the yellow fluorescence fade away gradually and a blue fluorescence appear in 6 min. And the test paper possesses excellent selectivity for gaseous isocyanate and distinct anti-interference to common VOCs. In conclusion, this strategy is an efficient way to detect gaseous isocyanates, and it may provide a referable approach for directly monitoring the volatile organic compounds in air.
  • 加载中
    1. [1]

      Xuan, L. M. S. Thesis, North China University of Science and Technology, Tangshan, 2015(in Chinese).

    2. [2]

      Tang, Y. F. M. S. Thesis, Anhui Jianzhu University, Hefei, 2013(in Chinese).

    3. [3]

      Spindler, R.; Frechet, J. M. J. Macromolecules 1993, 26, 4809.  doi: 10.1021/ma00070a013

    4. [4]

      Xie, W.-Q.; Chai, X.-S. J. Chromatogr. A 2016, 1468, 241.  doi: 10.1016/j.chroma.2016.09.042

    5. [5]

      Kubitz, K. A. Anal. Chem. 1957, 29, 814.  doi: 10.1021/ac60125a023

    6. [6]

      Kormos, L. H.; Sandridge, R. L.; Keller, J. Anal. Chem. 1981, 53, 1122.  doi: 10.1021/ac00230a046

    7. [7]

      Budnik, L. T.; Nowak, D.; Merget, R.; Lemiere, C.; Baur, X. J. Occup. Med. Toxicol. 2011, 6, 9.  doi: 10.1186/1745-6673-6-9

    8. [8]

      Coldwell, M.; White, J. UK Health and Safety Laboratory, Buxton, 2005.

    9. [9]

      Agarwal, B.; Jurschik, S.; Sulzer, P. Rapid Commun. Mass Spectrom. 2012, 26, 983.  doi: 10.1002/rcm.6173

    10. [10]

      Andre, C.; Jorge, F.; Castanheira, I.; Matos, A. J. Chemometr. 2013, 27, 91.  doi: 10.1002/cem.v27.5

    11. [11]

      Karlsson, D. Anal. Chim. Acta 2005, 534, 263.  doi: 10.1016/j.aca.2004.11.049

    12. [12]

      NIOSH Pocket Guide to Chemical Hazards and Other Databases. DHHS(NIOSH) Publication No. 2001-145(2001).

    13. [13]

      Skarping, G.; Renman, L.; Smith, B. E. F. J. Chromatogr. A 1983, 267, 315.  doi: 10.1016/S0021-9673(01)90851-9

    14. [14]

      Sharping, G.; Sango, C.; Smith, B. E. F. J. Chromatogr. A 1981, 208, 313.  doi: 10.1016/S0021-9673(00)81943-3

    15. [15]

      Dunlap, K. L.; Sandridge, R. L.; Keller, J. Anal. Chem. 1976, 48, 497.  doi: 10.1021/ac60367a043

    16. [16]

      Gagne, S.; Lesage, J.; Ostiguy, C.; Van Tra, H. Analyst 2003, 128, 1447.  doi: 10.1039/B310463J

    17. [17]

      Warwick, C. J.; Bagon, D. A.; Purnell, C. J. Analyst 1981, 106, 676.  doi: 10.1039/an9810600676

    18. [18]

      Ghosh, K. R.; Saha, S. K.; Gao, J.-P.; Wang, Z.-Y. Chem. Commun. 2014, 50, 1886.  doi: 10.1039/c3cc48311h

    19. [19]

      Gao, Z.-Z.; Han, B.-C.; Chen, K. Chem. Commun. 2017, 53, 6231.  doi: 10.1039/C7CC02269G

    20. [20]

      Chen, Q.; Bian, N.; Cao, C.; Qiu, X.-L.; Qi, A.-D.; Han, B.-H. Chem. Commun. 2010, 46, 4067.  doi: 10.1039/c002894k

    21. [21]

      Li, Q.-Q.; Li, Z. Adv. Sci. 2017, 4, 1600484.  doi: 10.1002/advs.v4.7

    22. [22]

      Chen, J.; Zhang, C.-H.; Lv, K.; Wang, H.; Zhang, P.-S.; Yi, P.-G.; Jiang, J.-H. Sensor. Actuat. B 2017, 251, 533.  doi: 10.1016/j.snb.2017.05.072

    23. [23]

      Daniela, G.; Alicia, V. V.; Denis, B.; Angel, G. B. J. Nanophotonics 2018, 12, 012505.

    24. [24]

      Zhang, G.-X.; Hu, F.; Zhang, D.-Q. Langmuir 2015, 31, 4593.  doi: 10.1021/la5029367

    25. [25]

      Sun, C.-L.; Teng, K.-X.; Niu, L.-Y.; Chen, Y.-Z.; Yang, Q.-Z. Acta Chim. Sinica 2018, 76, 779(in Chinese).  doi: 10.7503/cjcu20170368
       

    26. [26]

      Wang, J.; Wu, Y.-L.; Sun, L.-H.; Zeng, F.; Wu, S.-Z. Acta Chim. Sinica 2016, 74, 910(in Chinese).
       

    27. [27]

      Liu, Z.; He, W.; Guo, Z. Chem. Soc. Rev. 2013, 42, 1568.  doi: 10.1039/c2cs35363f

    28. [28]

      Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 20, 3.

    29. [29]

      Zheng, X.-J.; Zhu, W.-C.; Liu, D.; Ai, H. Appl. Mater. Interfaces 2014, 6, 7996.  doi: 10.1021/am501546h

    30. [30]

      Lin, H.-H.; Chan, Y.-C.; Chen, J.-W. J. Mater. Chem. 2011, 21, 3170.  doi: 10.1039/c0jm02942d

    31. [31]

      Leng, B.; Jiang, J.-B.; Tian, H. AlChE J. 2010, 56, 2957.  doi: 10.1002/aic.v56:11

    32. [32]

      Kai, Y.-M.; Hu, Y.-H.; Wang, K.; Zhi, W.-B.; Liang, M.-M.; Yang, M. Spectrochim. Acta A 2014, 118, 239.  doi: 10.1016/j.saa.2013.08.100

    33. [33]

      Zhang, H.-F.; Liu, T.; Yin, C.-C.; Wen, Y.; Chao, J.-B.; Zhang, Y.-B.; Huo, F.-J. Spectrochim. Acta A 2017, 174, 230.  doi: 10.1016/j.saa.2016.11.039

    34. [34]

      Li, B.; Yu, Y.-L.; Xiang, F.-Q.; Zhang, S.-Y. Appl. Mater. Interfaces 2018, 10, 16282.  doi: 10.1021/acsami.8b02539

    35. [35]

      Guo, B.-P.; Pan, X.-Z.; Liu, Y.-F.; Nie, L.-X.; Zhao, H.-Z.; Liu, Y.-Z.; Jing, J.; Zhang, X.-L. Sensor. Actuat. B-Chem. 2018, 256, 632.  doi: 10.1016/j.snb.2017.09.196

    36. [36]

      Zhang, Z.; Fan, J.-L.; Zhao, Y.-H.; Kang, Y.; Du, J.-J.; Peng, X.-J. ACS Sens. 2018, 3, 735  doi: 10.1021/acssensors.8b00082

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    3. [3]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(10)
  • Abstract views(1485)
  • HTML views(254)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return