Citation: Zuo Fangtao, Xu Wei, Zhao Aiwu. A SERS Approach for Rapid Detection of Hg2+ Based on Functionalized Fe3O4@Ag Nanoparticles[J]. Acta Chimica Sinica, ;2019, 77(4): 379-386. doi: 10.6023/A18110475 shu

A SERS Approach for Rapid Detection of Hg2+ Based on Functionalized Fe3O4@Ag Nanoparticles

  • Corresponding author: Zhao Aiwu, awzhao@iim.ac.cn
  • Received Date: 26 November 2018
    Available Online: 14 April 2019

    Fund Project: the National Natural Science Foundation of China 61875255Project supported by the National Natural Science Foundation of China (No. 61875255) and the Direction Program of Hefei Center of Physical Science and Technology (No. 2018ZYFX005)the Direction Program of Hefei Center of Physical Science and Technology 2018ZYFX005

Figures(12)

  • Mercury is an important pollutant, which has attracted wide attention in recent years. Up to now, based on surface enhanced raman spectroscopy (SERS) strategy for detection of Hg2+ is very attractive due to its high sensitivity among various detection methods. Based on the "turn-off" mechanism, we synthesized a magnetic Fe3O4@Ag nanomaterial for SERS detection of Hg2+. The magnetic-plasma resonance nanoparticles, which combine magnetic and plasma resonance properties, can be used for SERS detection of mercury ions with high sensitivity and selectivity. Firstly, the magnetic nanoparticles were prepared by solvothermal reaction, and silver nanoparticles were coated on the surface of magnetic nanoparticles after modification of amino groups. By modifying the positively charged PDADMAC, polyDADMAC (PDDA) layer, the negatively charged methyl orange probe molecule is adsorbed on the surface of Fe3O4@Ag, and in the presence of Hg2+, a significant decrease in SERS signal can be observed. Due to the short-time reaction of Hg2+ and Ag nanoparticles, an amalgam is formed on the surface of the Ag particles, which affects the surface plasmon resonance (SPR) characteristics of the Ag nanoparticles, resulting in enhanced attenuation of the electromagnetic field. And the short-time reaction of Hg2+ and Ag nanoparticles also leads to a decrease in the surface zeta potential of the Ag nanoparticles and affects the adsorption of the Raman probe molecules on the surface, resulting in a decrease in the SERS signal. Therefore, the decrease of SERS intensity in the presence of Hg2+ is mainly attributed to the interaction between Hg2+ and Ag nanoparticles. Through our experiments, it can be proved that the detection limit of the method based on "turn-off" mechanism for detecting Hg2+ ions can be as low as 10-10 mol/L. In addition, this method also shows high selectivity for divalent mercury ions. The SERS nanosensor designed in this experiment can be used to detect the specificity and ultra-sensitivity of Hg2+ in the environment, and it also provides great potential for the construction of SERS nanosensor for heavy metal ions.
  • 加载中
    1. [1]

      Cai, F. D.; Zhu, Q.; Zhao, K.; Deng, A. P.; Li, J. G. Environ. Sci. Technol. 2015, 49, 5013.  doi: 10.1021/acs.est.5b00690

    2. [2]

      Zhang, C. Y.; Meng, Y. Z.; Kuang, J. Z.; Xu, L. Acta Chim. Sinica 2015, 73, 409.
       

    3. [3]

      Wang, X. W.; Chen, S. Acta Chim. Sinica 2014, 72, 1147.
       

    4. [4]

      Wan, J.; Yin, G.; Ma, X. J.; Xing, L.; Luo, X. L. Electroanalysis 2014, 26, 823.  doi: 10.1002/elan.201300628

    5. [5]

      Taylor, V. F.; Bugge, D.; Jackson, B. P.; Chen, C. Y. Environ. Sci. Technol. 2014, 48, 5058.  doi: 10.1021/es404159k

    6. [6]

      Srivastava, R. K.; Sedman, C. B.; Kilgroe, J. D.; Smith, D.; Renninger, S. J. Air Waste Manage. Assoc. 2001, 51, 1460.  doi: 10.1080/10473289.2001.10464367

    7. [7]

      Lee, C.; Choo, J. Bull. Korean Chem. Soc. 2011, 32, 2003.  doi: 10.5012/bkcs.2011.32.6.2003

    8. [8]

      Wu, Y. G.; Zhan, S. S.; Xu, L. R.; Shi, W. W.; Xi, T.; Zhan, X. J.; Zhou, P. Chem. Commun. 2011, 47, 6029.

    9. [9]

      Shah, A. Q.; Kazi, T. G.; Baig, J. A.; Afridi, H. I.; Arain, M. B. Food Chem. 2012, 134, 2345.  doi: 10.1016/j.foodchem.2012.03.109

    10. [10]

      Ye, B. C.; Yin, B. C. Angew. Chem., Int. Ed. 2008, 47, 8386.  doi: 10.1002/anie.v47:44

    11. [11]

      Lou, T. T.; Chen, L.; Zhang, C. R.; Kang, Q.; You, H. Y.; Shen, D. Z.; Chen, L. X. Anal. Methods 2012, 4, 488.  doi: 10.1039/c2ay05764f

    12. [12]

      Wu, X. F.; Ma, Q. J.; Wei, X. J.; Hou, Y. M.; Zhu, X. Sens. Actuators, B 2013, 183, 565.  doi: 10.1016/j.snb.2013.04.024

    13. [13]

      Rakkesh, R. A.; Durgalakshmi, D.; Balakumar, S. RSC Adv. 2016, 6, 34342.  doi: 10.1039/C6RA01784C

    14. [14]

      Qu, H.; Lai, Y.; Niu, D.; Sun, S. Anal. Chim. Acta 2013, 763, 38.  doi: 10.1016/j.aca.2012.12.016

    15. [15]

      Du, Y. X.; Liu, R. Y.; Liu, B. H.; Wang, S. H.; Han, M. Y.; Zhang, Z. P. Anal. Chem. 2013, 85, 3160.  doi: 10.1021/ac303358w

    16. [16]

      Li, D.-W.; Zhai, W.-L.; Li, Y.-T.; Long, Y.-T. Microchim. Acta 2014, 181, 23.  doi: 10.1007/s00604-013-1115-3

    17. [17]

      Alvarez-Puebla, R. A.; Liz-Marzan, L. M. Angew. Chem., Int. Ed. 2012, 51, 11214.  doi: 10.1002/anie.201204438

    18. [18]

      Kang, T.; Yoo, S. M.; Yoon, I.; Lee, S.; Choo, J.; Lee, S. Y.; Kim, B. Chem.-Eur. J. 2011, 17, 2211.  doi: 10.1002/chem.201001663

    19. [19]

      Duan, J. L.; Yang, M.; Lai, Y. C.; Yuan, J. P.; Zhan, J. H. Anal. Chim. Acta 2012, 723, 88.  doi: 10.1016/j.aca.2012.02.031

    20. [20]

      Li, F.; Wang, J.; Lai, Y. M.; Wu, C.; Sun, S. Q.; He, Y. H.; Ma, H. Biosens. Bioelectron. 2013, 39, 82.  doi: 10.1016/j.bios.2012.06.050

    21. [21]

      Kang, Y.; Wu, T.; Liu, B. X.; Wang, X.; Du, Y. P. Microchim. Acta 2014, 181, 1333.  doi: 10.1007/s00604-014-1259-9

    22. [22]

      Ojea-Jimenez, I.; Lopez, X.; Arbiol, J.; Puntes, V. ACS Nano 2012, 6, 2253.  doi: 10.1021/nn204313a

    23. [23]

      Ding, X.; Kong, L.; Wang, J.; Fang, F.; Li, D.; Liu, J. ACS Appl. Mater. Interfaces 2013, 5, 7072.  doi: 10.1021/am401373e

    24. [24]

      Zhang, L.; Chang, H. X.; Hirata, A.; Wu, H. K.; Xue, Q. K.; Chen, M. W. ACS Nano. 2013, 7, 4595.  doi: 10.1021/nn4013737

    25. [25]

      Chung, E.; Gao, R.; Ko, J.; Choi, N.; Lim, D. W.; Lee, E. K.; Chang, S.-I.; Choo, J. Lab. Chip. 2013, 13, 260.  doi: 10.1039/C2LC41079F

    26. [26]

      Esmaielzadeh Kandjani, A.; Sabri, Y. M.; Mohammad-Taheri, M.; Bansal, V.; Bhargava, S. K. Environ. Sci. Technol. 2015, 49, 1578.  doi: 10.1021/es503527e

    27. [27]

      Sun, B.; Jiang, X. X.; Wang, H. Y.; Song, B.; Zhu, Y.; Wang, H.; Su, Y. Y.; He, Y. Anal. Chem. 2015, 87, 1250.  doi: 10.1021/ac503939d

    28. [28]

      Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Angew. Chem., Int. Ed. 2005, 44, 2782.  doi: 10.1002/(ISSN)1521-3773

    29. [29]

      Zhao, Y. L.; Tao, C. R.; Xiao, G.; Wei, G. P.; Li, L. H.; Liu, C. X.; Su, H. J. Nanoscale 2016, 8, 5313.  doi: 10.1039/C5NR08624H

    30. [30]

      Li, Z. X.; Zhao, A. W.; Gao, Q.; Guo, H. Y.; Wang, D. P.; Li, L. Acta Chim. Sinica 2015, 73, 847.
       

    31. [31]

      Ren, W.; Zhu, C. Z.; Wang, E. Nanoscale 2012, 4, 5902.  doi: 10.1039/c2nr31410j

    32. [32]

      Alvarez-Puebla, R. A.; Arceo, E.; Goulet, P. J. G.; Garrido, J. J.; Aroca, R. F. J. Phys. Chem. B 2005, 109, 3787.  doi: 10.1021/jp045015o

    33. [33]

      He, S. T.; Yao, J. N.; Jiang, P.; Shi, D. X.; Zhang, H. X.; Xie, S. S.; Pang, S. J.; Gao, H. J. Langmuir 2001, 17, 1571.  doi: 10.1021/la001239w

    34. [34]

      Katsikas, L.; Gutierrez, M.; Henglein, A. J. Phys. Chem. 1996, 100, 11203.  doi: 10.1021/jp960357i

    35. [35]

      Ding, S.-Y.; Wu, D.-Y.; Yang, Z.-L.; Ren, B.; Xu, X.; Tian, Z.-Q. Chem. J. Chin. Univ. Chin. 2008, 29, 2569.  doi: 10.3321/j.issn:0251-0790.2008.12.048

    36. [36]

      Zhao, L. B.; Huang, Y. F.; Wu, D. Y.; Ren, B. Acta Chim. Sinica 2014, 72, 1125.
       

    37. [37]

      Mclellan, J. M.; Xiong, Y. J.; Hu, M.; Xia, Y. N. Chem. Phys. Lett. 2006, 417, 230.  doi: 10.1016/j.cplett.2005.10.028

    38. [38]

      Wang, G. Q.; Lim, C.; Chen, L. X.; Chon, H.; Choo, J.; Hong, J.; Demello, A. J. Anal. Bioanal. Chem. 2009, 394, 1827.  doi: 10.1007/s00216-009-2832-7

    39. [39]

      Ganbold, E.-O.; Park, J.-H.; Ock, K.-S.; Joo, S.-W. Bull. Korean Chem. Soc. 2011, 32, 519.  doi: 10.5012/bkcs.2011.32.2.519

    40. [40]

      Sun, Z. L.; Du, J. J.; Lv, B.; Jing, C. Y. RSC Adv. 2016, 6, 73040.  doi: 10.1039/C6RA15044F

    41. [41]

      Hou, M. J.; Huang, Y.; Ma, L. W.; Zhang, Z. J. Nanoscale Res. Lett. 2015, 10, 437.  doi: 10.1186/s11671-015-1142-6

    42. [42]

      Mou, Y.; Lu, H.; Li, M.; Chen, C. Chin. J. Chem. 2017, 35, 435.  doi: 10.1002/cjoc.v35.4

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    3. [3]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    6. [6]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    12. [12]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    13. [13]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    14. [14]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    15. [15]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(16)
  • Abstract views(1686)
  • HTML views(296)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return