Citation: Cai Qian, Ma Haowen. Recent Advances of Chiral Hypervalent Iodine Reagents[J]. Acta Chimica Sinica, ;2019, 77(3): 213-230. doi: 10.6023/A18110470 shu

Recent Advances of Chiral Hypervalent Iodine Reagents

  • Corresponding author: Cai Qian, caiqian@jnu.edu.cn
  • Received Date: 21 November 2018
    Available Online: 28 March 2019

    Fund Project: the National Natural Science Foundation of China 21772066Guangdong Special Support Program 2017TX04R059Project supported by the National Natural Science Foundation of China (Nos. 21772066, 21572229) and Guangdong Special Support Program (No. 2017TX04R059)the National Natural Science Foundation of China 21572229

Figures(39)

  • Hypervalent iodine chemistry has arose as an important field in organic chemistry in the past decades. Hypervalent iodine compounds, with reactivities similarly to transition metals in many different types of transformations, have attracted broad interests in organic community due to their practical advantages in the mild conditions, low costs, environmental benign and low toxicity. Great progresses have been made in this field. Chiral hypervalent iodine reagents or precursors have also been developed and utilized in a variety of asymmetric reactions in a stoichiometric or catalytic way. Important advances have been witnessed in the field of chiral hypervalent iodine chemistry in recent years. However, great limitations still exist. In this review, we have made a summary of different types of chiral hypervalent iodine reagents and precursors according to the characteristics of these compounds and the timeline. It may be helpful for the researchers to better understand the development and limitations of chiral hypervalent iodine chemistry.
  • 加载中
    1. [1]

      For books, see: (a) Chemistry of Hypervalent Compounds, Ed.: AKiba, K. Y., Wiley-VCH, New York, 1999. (b) Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure and Syn-thetic Application of Polyvalent Iodine Compounds, John Wiley & Sons Ltd., New York, 2014. (c) Iodine Chemistry And Applications, Ed.: Kaiho, T., John Wiley & Sons Ltd., New York, 2015. (d) Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis, Ed.: Wirth, T., Springer, 2003.

    2. [2]

      For recent reviews, see: (a) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328. (b) Duan, Y.; Jiang, S.; Han, Y.; Sun, B.; Zhang, C. Chin. j. Org. Chem. 2016, 36, 1973(in Chinese). (段亚南, 姜山, 韩永超, 孙博, 张弛, 有机化学, 2016, 36, 1973. ) (c) Ma, J.; Chen, L.; Yuan, Z.; Cheng, H. Chin. j. Org. Chem. 2018, 38, 1586(in Chinese). (马姣丽, 陈立成, 袁中文, 程辉成, 有机化学, 2018, 38, 1586. )

    3. [3]

      For selected recent reviews, see: (a) Flores, A.; Cots, E.; Bergès, J.; Muñiz, K. Adv. Synth. Catal. 2019, 361, DOI: 10.1002/adsc. 201800521. (b)MartínRomero,R.; Wöste,T. H.; Muñiz,K. Chem. AsianJ. 2014,9,972. (c)Singh,F. V.; Wirth,T. Chem. AsianJ. 2014,9,950. (d)Harned,A. M. TetrahedronLett. 2014,55,4681. (e)Parra,A.; Reboredo, S. Chem. Eur. J. 2013,19,17244.

    4. [4]

      Liang, H.; Ciufolini, M. A. Angew. Chem. Int. Ed. 2011, 50, 11849.  doi: 10.1002/anie.v50.50

    5. [5]

      Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. j. Am. Chem. Soc. 2005, 127, 12244. (b) Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Angew. Chem. Int. Ed. 2005, 44, 6193.

    6. [6]

      Pribram, R. Justus Liebigs Ann. Chem. 1907, 351, 481.  doi: 10.1002/(ISSN)1099-0690

    7. [7]

      Imamoto, T.; Koto, H. Chem. Lett. 1986, 967.

    8. [8]

      Hatzigrigoriou, E.; Varvoglis, A.; Bakola-Christianopoulou, M. j. Org. Chem. 1990, 55, 315.  doi: 10.1021/jo00288a053

    9. [9]

      Xia, M.; Chen, Z.-C. Synth. Commun. 1997, 27, 1321.  doi: 10.1080/00397919708006060

    10. [10]

      Ray Ⅲ, D. G.; Koser, G. F. j. Am. Chem. Soc. 1990, 112, 5672.  doi: 10.1021/ja00170a059

    11. [11]

      Ray Ⅲ D. G.; Koser, G. F. j. Org. Chem. 1992, 57, 1607.  doi: 10.1021/jo00031a054

    12. [12]

      Tohma, H.; Takizawa, S.; Watanabe, H.; Fukuoka, Y.; Maegawa, T.; Kita, Y. j. Org. Chem. 1999, 64, 3519.  doi: 10.1021/jo982295t

    13. [13]

      Rabah, G. A.; Koser, G. F. Tetrahedron Lett. 1996, 37, 6453.  doi: 10.1016/0040-4039(96)01436-0

    14. [14]

      (a) Wirth, T.; Hirt, U. H. Tetrahedron Asymmetry 1997, 8, 23. (b) Hirt, U. H.; Spingler, B.; Wirth, T. j. Org. Chem. 1998, 63, 7674. (c) Hirt, U. H.; Schuster, M. F. H.; French, A. N.; Wiest, O. G.; Wirth, T. Eur. j. Org. Chem. 2001, 1569.

    15. [15]

      Mizar, P.; Laverny, A.; EI-Sherbini, M.; Farid, U.; Brown, M.; Malmedy, F.; Wirth, T. Chem. Eur. j. 2014, 20, 9910.  doi: 10.1002/chem.201403891

    16. [16]

      Hempel, C.; Maichle-Mössmer, C.; Pericàs, M. A.; Nachtsheim, B. j. Adv. Synth. Catal. 2017, 359, 2941.

    17. [17]

      Fujita, M.; Okuno, S.; Lee, H. J.; Sugimura, T.; Okuyama, T. Tetrahedron Lett. 2007, 48, 8691.  doi: 10.1016/j.tetlet.2007.10.015

    18. [18]

      (a) Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem. Int. Ed. 2010, 49, 2175. (b) Uyanik, M.; Yasui, T.; Ishihara, K. Tetrahedron 2010, 66, 5841.

    19. [19]

      (a) Fujita, M.; Yoshida, Y.; Miyata, K.; Wakisaka, A.; Sugimura, T. Angew. Chem. Int. Ed. 2010, 49, 7068. (b) Fujita, M.; Mori, K.; Shimogaki, M.; Sugimura, T. Org. Lett. 2012, 14, 1294. (c) Shimogaki, M.; Fujita, M.; Sugimura, T. Eur. j. Org. Chem. 2013, 7128. (d) Takesue, T.; Fujita, M.; Sugimura, T.; Akutsu, H. Org. Lett. 2014, 16, 4634.

    20. [20]

      Fujita, M.; Wakita, M.; Sugimura, T. Chem. Commun. 2011, 47, 3983.  doi: 10.1039/c1cc10129c

    21. [21]

      (a) Shimogaki, M.; Fujita, M.; Sugimura, T. Angew. Chem. Int. Ed. 2016, 55, 15797. (b) Shimogaki, M.; Fujita, M.; Sugimura, T. j. Org. Chem. 2017, 82, 11836.

    22. [22]

      Röben, C.; Souto, j. A.; González, Y.; Lishchynskyi, A.; Muñiz, K. Angew. Chem. Int. Ed. 2011, 50, 9478.  doi: 10.1002/anie.v50.40

    23. [23]

      Muñiz, K.; Barreiro, L.; Romero, R. M.; Martínez, C. j. Am. Chem. Soc. 2017, 139, 4354.  doi: 10.1021/jacs.7b01443

    24. [24]

      (a) Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.; Muñiz, K. Angew. Chem. Int. Ed. 2016, 55, 413. (b) Wöste, T. H.; Muñiz, K. Synthesis 2016, 48, 816.

    25. [25]

      (a) Farid, U.; Wirth, T. Angew. Chem. Int. Ed. 2012, 51, 3462. (b) Mizar, P.; Niebuhr, R.; Hutchings, M.; Farooq, U.; Wirth, T. Chem. Eur. J. 2016, 22, 1614.

    26. [26]

      Gelis, C.; Dumoulin, A.; Bekkaye, M.; Neuville, L.; Masson, G. Org. Lett. 2017, 19, 278.  doi: 10.1021/acs.orglett.6b03631

    27. [27]

      (a) Kong, W.; Feige, P.; de Haro, T.; Nevado, C. Angew. Chem. Int. Ed. 2013, 52, 2469. (b) Pluta, R.; Krach, P. E.; Cavallo, L.; Falivene, L.; Rueping, M. ACS Catal. 2018, 8, 2582.

    28. [28]

      Wu, H.; He, Y.-P.; Xu, L.; Zhang, D.-Y.; Gong, L.-Z. Angew. Chem. Int. Ed. 2014, 53, 3466.  doi: 10.1002/anie.201309967

    29. [29]

      Zhang, D.-Y.; Xu, L.; Wu, H.; Gong, L.-Z. Chem. Eur. j. 2015, 21, 10314.  doi: 10.1002/chem.201501583

    30. [30]

      Cao, Y.; Zhang, X.; Lin, G.; Zhang-Negrerie, D.; Du, Y. Org. Lett. 2016, 18, 5580.  doi: 10.1021/acs.orglett.6b02816

    31. [31]

      Farid, U.; Malmedy, F.; Claveau, R.; Albers, C.; Wirth, T. Angew. Chem. Int. Ed. 2013, 52, 7018.  doi: 10.1002/anie.201302358

    32. [32]

      Brown, M.; Kumar, R.; Rehbein, J.; Wirth, T. Chem. Eur. j. 2016, 22, 4030.  doi: 10.1002/chem.201504844

    33. [33]

      Banik, S. M.; Medley, j. W.; Jacobsen, E. N. j. Am. Chem. Soc. 2016, 138, 5000.  doi: 10.1021/jacs.6b02391

    34. [34]

      Banik, S. M.; Medley, j. W.; Jacobsen, E. N. Science 2016, 353, 51.  doi: 10.1126/science.aaf8078

    35. [35]

      Zhou, B.; Haj, M. K.; Jacobsen, E. N.; Houk, K. N.; Xue, X.-S. j. Am. Chem. Soc. 2018, 140, 15206.  doi: 10.1021/jacs.8b05935

    36. [36]

      Mennie, K. M.; Banik, S. M.; Reichert, E. C.; Jacobsen, E. N. j. Am. Chem. Soc. 2018, 140, 4797.  doi: 10.1021/jacs.8b02143

    37. [37]

      Qurban, J.; Elsherbini, M.; Wirth, T. j. Org. Chem. 2017, 82, 11872.  doi: 10.1021/acs.joc.7b01571

    38. [38]

      Hashimoto, T.; Shimazaki, Y.; Omatsu, Y.; Maruoka, K. Angew. Chem. Int. Ed. 2018, 57, 7200.  doi: 10.1002/anie.v57.24

    39. [39]

      Zhdandin, V. V.; Smart, j. T.; Zhao, P.; Kiprof, P. Tetrahedron Lett. 2000, 41, 5299.  doi: 10.1016/S0040-4039(00)00836-4

    40. [40]

      Ladziata, U.; Carlson, J.; Zhdankin, V. V. Tetrahedron Lett. 2006, 47, 6301.  doi: 10.1016/j.tetlet.2006.06.103

    41. [41]

      Altermann, S. M.; Richardson, R. D.; Page, T. K.; Schmidt, R. K.; Holland, E.; Mohammed, U.; Paradine, S. M.; French, A. N.; Richter, C.; Bahar, A. M.; Witulski, B.; Wirth, T. Eur. j. Org. Chem. 2008, 5315.

    42. [42]

      Farooq, U.; Schäfer, S.; Ali Shah, A.-U.-H.; Freudendahl, D. M.; Wirth, T. Synthesis 2010, 1023.

    43. [43]

      Volp, K. A.; Harned, A. M. Chem. Commun. 2013, 49, 3001.  doi: 10.1039/c3cc00013c

    44. [44]

      Boppisetti, j. K.; Birman, V. B. Org. Lett. 2009, 6, 1221.

    45. [45]

      Guilbault, A.-A.; Basdevant, B.; Wanie, V.; Legault, C. Y. j. Org. Chem. 2012, 77, 11283.  doi: 10.1021/jo302393u

    46. [46]

      Rodríguez, A.; Moran, W. j. Synthesis 2012, 44, 1178.  doi: 10.1055/s-0031-1290590

    47. [47]

      Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem. Int. Ed. 2013, 52, 9215.  doi: 10.1002/anie.201303559

    48. [48]

      Uyanik, M.; Sasakura, N.; Mizuno, M.; Ishihara, K. ACS Catal. 2017, 7, 872.  doi: 10.1021/acscatal.6b03380

    49. [49]

      Uyanik, M.; Yasui, Y.; Ishihara, K. j. Org. Chem. 2017, 82, 11946.  doi: 10.1021/acs.joc.7b01941

    50. [50]

      Jain, N.; Xu, S.; Ciufolini, M. A. Chem. Eur. j. 2017, 23, 4542.  doi: 10.1002/chem.201700667

    51. [51]

      Molnár, I. G.; Gilmour, R. j. Am. Chem. Soc. 2016, 138, 5004.  doi: 10.1021/jacs.6b01183

    52. [52]

      Scheidt, F.; Schäfer, M.; Sarie, j. C.; Doniliuc, C. G.; Molloy, j. J.; Gilmour, R. Angew. Chem. Int. Ed. 2018, 57, 16431.  doi: 10.1002/anie.201810328

    53. [53]

      Ochiai, M.; Takaoka, Y.; Masaki, Y. j. Am. Chem. Soc. 1990, 112, 5677.  doi: 10.1021/ja00170a063

    54. [54]

      Ochiai, M.; Kitagawa, Y.; Takayama, N.; Takaoka, Y.; Shiro, M. j. Am. Chem. Soc. 1999, 121, 9234.

    55. [55]

      Deng, Q.-H.; Wang, j.-C.; Xu, Z.-J.; Zhou, C.-Y.; Che, C.-M. Synthesis 2011, 18, 2959.

    56. [56]

      Quideau, S.; Lyvinec, G.; Marguerit, M.; Bathany, K.; Ozanne-Beaudenon, A.; Buffeteau, T.; Cavagnat, D.; Chénedé, A. Angew. Chem. Int. Ed. 2009, 48, 4605.  doi: 10.1002/anie.v48:25

    57. [57]

      Bosset, C.; Coffinier, R.; Peixoto, P. A.; Assal, M. E.; Miqueu, K. M.; Sotiropoulos, j.-M. Pouységu, L.; Quideau, S. Angew. Chem. Int. Ed. 2014, 53, 9860.  doi: 10.1002/anie.201403571

    58. [58]

      Companys, S.; Peixoto, P. A.; Bosset, C.; Chassaing, S.; Miqueu, K.; Sotiropoulos, j.-M.; Pouységu, L.; Quideau, S. Chem. Eur. j. 2017, 23, 13309.  doi: 10.1002/chem.v23.54

    59. [59]

      (a) Brenet, S.; Berthiol, F.; Einhorn, j. Eur. j. Org. Chem. 2013, 8094. (b) Brenet S.; Minozzi, C.; Clarens, B.; Amiri, L.; Berthiol, F. Synthesis 2015, 47, 3859

    60. [60]

      Dohi, T.; Sasa, H.; Miyazaki, K.; Fujitake, M.; Takenaga, N.; Kita, Y. j. Org. Chem. 2017, 82, 11954.  doi: 10.1021/acs.joc.7b02037

    61. [61]

      Levitre, G.; Dumoulin, A.; Retailleau, P.; Panossian, A.; Leroux, F. R.; Masson, G. j. Org. Chem. 2017, 82, 11877.  doi: 10.1021/acs.joc.7b01597

    62. [62]

      Xue, j.-H.; Zhou, Q.-L. Acta Chim. Sinica 2014, 72, 778(in Chinese).
       

    63. [63]

      Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka, H.; Caemmerer, S. B.; Kita, Y. Angew. Chem. Int. Ed. 2008, 47, 3787.  doi: 10.1002/(ISSN)1521-3773

    64. [64]

      Dohi, T.; Takenaga, N.; Nakae, T.; Toyoda, Y.; Yamasaki, M.; Shiro, M.; Fujioka, H.; Maruyama, A.; Kita, Y. j. Am. Chem. Soc. 2013, 135, 4558.  doi: 10.1021/ja401074u

    65. [65]

      Yu, J.; Cui, J.; Hou, X.-S.; Liu, S.-S.; Gao, W.-C.; Jiang, S.; Tian, J.; Zhang, C. Tetrahedron: Asymmetry 2011, 22, 2039.  doi: 10.1016/j.tetasy.2011.12.003

    66. [66]

      Ding, Q.; He, H.; Cai, Q. Org. Lett. 2018, 20, 4554.  doi: 10.1021/acs.orglett.8b01849

    67. [67]

      Wang, Y.; Yuan, H.; Lu, H.; Zheng, W.-H. Org. Lett. 2018, 20, 2555.  doi: 10.1021/acs.orglett.8b00711

    68. [68]

      Murray, S. J.; Müller-Bunz, H.; Ibrahim, H. Chem. Commun. 2012, 48, 6268.  doi: 10.1039/c2cc32280c

    69. [69]

      Ogasawara, M.; Sasa, H.; Hu, H.; Amano, Y.; Nakajima, H.; Takenaga, N.; Nakajima, K.; Kita, Y.; Takahashi, T.; Dohi, T. Org. Lett. 2017, 19, 4102.  doi: 10.1021/acs.orglett.7b01876

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    9. [9]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    10. [10]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    16. [16]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    17. [17]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    18. [18]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    19. [19]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    20. [20]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

Metrics
  • PDF Downloads(76)
  • Abstract views(2521)
  • HTML views(581)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return