Citation: Wang Haixu, Yang Guang, Cheng Tianshu, Wang Ning, Sun Rong, Wong Ching-Ping. Recent Advances in Hydrothermal Synthesis of Low Dimensional Boron Nitride Nanostructures[J]. Acta Chimica Sinica, ;2019, 77(4): 316-322. doi: 10.6023/A18110456 shu

Recent Advances in Hydrothermal Synthesis of Low Dimensional Boron Nitride Nanostructures

  • Corresponding author: Wang Ning, ning.wang@siat.ac.cn Sun Rong, rong.sun@siat.ac.cn
  • Received Date: 7 November 2018
    Available Online: 14 April 2018

    Fund Project: Project supported by the National Key R & D Project from Ministry of Science and Technology of China (No. 2017YFB0406200) and R & D Funds for basic Research Program of Shenzhen (No. JCYJ20150831154213681)R & D Funds for basic Research Program of Shenzhen JCYJ20150831154213681the National Key R & D Project from Ministry of Science and Technology of China 2017YFB0406200

Figures(6)

  • As an ultra-wide bandgap insulating material, boron nitride has attracted intense interest due to its high thermal conductivity, high chemical and thermal stability as well as their applications in thermal interface materials, photo/electro-catalysis, and energy storage. As for the low dimensional boron nitride nanostructures, e.g., nanosheets, nanotubes, nanorods, nanowires, nanospheres, and quantum dots, the high thermal conductivity (600 W/mK) and the ultra-large bandgap (5~6 eV) make them the promising candidate for thermal conductive composites, thermoelectric materials and electronic packaging materials, which gives rise to the hot research topic on the synthesis and properties of the boron nitride nanostructures. In this review, the recent advances in the hydrothermal synthesis of boron nitride nanostructures will be fully discussed, and the remarks on the issues need to be addressed, the comprehensive understanding of the mechanism and the new approaches for the hydrothermal synthesis will be proposed in the end.
  • 加载中
    1. [1]

      Zeng, X.; Sun, J.; Yao, Y.; Sun, R.; Xu, J. B.; Wong, C. P. ACS Nano 2017, 11, 5167.  doi: 10.1021/acsnano.7b02359

    2. [2]

      Zhan, Y.; Yan, J.; Wu, M.; Guo, L.; Lin, Z.; Qiu, B.; Chen, G.; Wong, K. Y. Talanta 2017, 174, 365.  doi: 10.1016/j.talanta.2017.06.032

    3. [3]

      Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E. ACS Nano 2013, 7, 2898.  doi: 10.1021/nn400280c

    4. [4]

      Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Chem. Rev. 2013, 113, 3766.  doi: 10.1021/cr300263a

    5. [5]

      Tan, X. Y.; Yang, S. Y.; Li, H. J. Acta Chim. Sinica 2017, 75, 271.
       

    6. [6]

      Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081.  doi: 10.1103/PhysRevB.49.5081

    7. [7]

      Li, L.; Jia, G. X.; Wang, X. X.; Wu, T. W.; Song, X. W.; An, S. L. Acta Chim. Sinica 2017, 75, 284.  doi: 10.7503/cjcu20160630
       

    8. [8]

      Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Science 1995, 269, 966.  doi: 10.1126/science.269.5226.966

    9. [9]

      Loiseau, A.; Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Phys. Rev. Lett. 1996, 76, 4737.  doi: 10.1103/PhysRevLett.76.4737

    10. [10]

      Nag, A.; Raidongia, K.; Hembram, K. P. S. S.; Datta, R.; Waghmare, U. V.; Rao, C. N. R. ACS Nano 2010, 4, 1539.  doi: 10.1021/nn9018762

    11. [11]

      Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011, 331, 568.  doi: 10.1126/science.1194975

    12. [12]

      Lin, Y.; Connell, J. W. Nanoscale 2012, 4, 6908.  doi: 10.1039/c2nr32201c

    13. [13]

      Pakdel, A.; Bando, Y.; Golberg, D. Chem. Soc. Rev. 2014, 43, 934.  doi: 10.1039/C3CS60260E

    14. [14]

      E, S. F.; Long, X. Y.; Li, C. W.; Geng, R. J.; Han, D. B.; Lu, W. B.; Yao, Y. G. Chem. Phys. Lett. 2017, 687, 307.  doi: 10.1016/j.cplett.2017.09.041

    15. [15]

      Zhang, Z. H.; Zhao, X. F.; Sun, H. B. J. Ceramics 2018, 39, 244.
       

    16. [16]

      Pakdel, A.; Bando, Y.; Golberg, D. Chem. Soc. Rev. 2014, 43, 934.  doi: 10.1039/C3CS60260E

    17. [17]

      Yuan, S. D.; Xiong, K.; Hu, K. P.; Zhang, Y. H.; Luo, Y.; Jiang, G. D. J. Mater. Eng. 2013, 10, 53.
       

    18. [18]

      Ding, J. H.; Zhao, H. R.; Yu, H. B. 2D Mater. 2018, 5, 045015.  doi: 10.1088/2053-1583/aad51a

    19. [19]

      Zheng, Z. Y.; Cox, M.; Li, B. J. Mater. Sci. 2017, 53, 66.

    20. [20]

      Du, Z. H.; Zeng, X. M.; Zhu, M. M.; Kanta, A.; Liu, Q.; Li, J. Z.; Kong, L. B. Ceram. Int. 2018, 44, 21461.  doi: 10.1016/j.ceramint.2018.08.207

    21. [21]

      Wang, N.; Yang, G.; Wang, H.; Yan, C.; Sun, R.; Wong, C.-P. Mater. Today 2018, DOI:10.1016/j.mattod.2018.10.039.  doi: 10.1016/j.mattod.2018.10.039

    22. [22]

      Li, X.; Hao, X.; Zhao, M.; Wu, Y.; Yang, J.; Tian, Y.; Qian, G. Adv. Mater. 2013, 25, 2200.  doi: 10.1002/adma.201204031

    23. [23]

      Alem, N.; Erni, R.; Kisielowski, C.; Rossell, M. D.; Gannett, W.; Zettl, A. Phys. Rev. B 2009, 80, 155425.  doi: 10.1103/PhysRevB.80.155425

    24. [24]

      Yi, M.; Shen, Z. G.; Zhu, J. Y. Chin. Sci. Bull. 2014, 59, 1794.  doi: 10.1007/s11434-014-0303-9

    25. [25]

      Du, M.; Li, X. L.; Wang, A. Z.; Wu, Y. Z.; Hao, X. P.; Zhao, M. W. Angew. Chem., Int. Ed. 2014, 53, 3645.  doi: 10.1002/anie.v53.14

    26. [26]

      Zheng, Z. Y.; Cox, M.; Li, B. J. Mater. Sci. 2017, 53, 66.

    27. [27]

      Liu, C.; Zhang, L.; Li, P.; Chen, Y. A.; Cui, W. W.; Zhang, H. L. J. Mater. Eng. 2016, 44, 122.
       

    28. [28]

      Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klockner, M.; Kalin, T.; Weinl, M.; Gsell, S.; Schreck, M.; Osterwalder, J.; Greber, T. Rev. Sci. Instrum. 2014, 85, 035101.  doi: 10.1063/1.4866648

    29. [29]

      Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; Ajayan, P. M. Nano Lett. 2010, 10, 3209.  doi: 10.1021/nl1022139

    30. [30]

      Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. Min.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T.; Kong, J. Nano Lett. 2011, 12, 161.

    31. [31]

      He, L. F.; Shirahata, J.; Suematsu, H.; Nakayama, T.; Suzuki, T.; Jiang, W.; Niihara, K. Mater. Lett. 2014, 117, 120.  doi: 10.1016/j.matlet.2013.12.008

    32. [32]

      Kumar, V.; Nikhil, K.; Roy, P.; Lahiri, D.; Lahiri, I. RSC Adv. 2016, 6, 48025.  doi: 10.1039/C6RA05288F

    33. [33]

      Liang, D.; Ai, T.; Zhang, H. R.; Yan, X.; Zhou, Y. S. J. Solid Rocket Technol. 2018, 41, 642.

    34. [34]

      Tian, L.; Li, J.; Liang, F.; Chang, S.; Zhang, H.; Zhang, M.; Zhang, S. J. Colloid Interface Sci. 2019, 536, 664.  doi: 10.1016/j.jcis.2018.10.098

    35. [35]

      Yang, G.; Wang, N.; Wang, H. X.; Song, R. In 2018 IEEE 68th Electronic Components, Technology Conference, San Diego, California USA, 2018, pp. 1421~1426.

    36. [36]

      Lee, R. S.; Gavillet, J.; Lamy de la Chapelle, M.; Loiseau, A.; Cochon, J. L.; Pigache, D.; Thibault, J.; Willaime, F. Phys. Rev. B 2001, 64, 121405.  doi: 10.1103/PhysRevB.64.121405

    37. [37]

      Li, L. H.; Chen, Y.; Glushenkov, A. M. Nanotechnology 2010, 21, 105601.  doi: 10.1088/0957-4484/21/10/105601

    38. [38]

      Kim, M. J.; Chatterjee, S.; Kim, S. M.; Stach, E. A.; Bradley, M. G.; Pender, M. J.; Sneddon, L. G.; Maruyama, B. Nano Lett. 2008, 8, 3298.  doi: 10.1021/nl8016835

    39. [39]

      Zhang, X.; Lian, G.; Si, H. B.; Wang, J.; Cui, D. L.; Wang, Q. L. J. Mater. Chem. A 2013, 1, 11992.  doi: 10.1039/c3ta12447a

    40. [40]

      Xue, Q.; Zhang, H. J.; Zhu, M. S.; Wang, Z. F.; Pei, Z. X.; Huang, Y.; Huang, Y.; Song, X. F.; Zeng, H. B.; Zhi, C. Y. RSC Adv. 2016, 6, 79090.  doi: 10.1039/C6RA16744F

    41. [41]

      Lin, L. X.; Xu, Y. X.; Zhang, S. W.; Ross, I. M.; Ong, A. C. M.; Allwood, D. A. Small 2014, 10, 60.  doi: 10.1002/smll.201301001

    42. [42]

      Fan, L.; Zhou, Y. M.; He, M.; Tong, Y.; Zhong, X.; Fang, J. S.; Bu, X. H. J. Mater. Sci. 2017, 52, 13522.  doi: 10.1007/s10853-017-1395-9

    43. [43]

      Peng, D.; Zhang, L.; Li, F. F.; Cui, W. R.; Liang, R. P.; Qiu, J. D. ACS Appl. Mater. Interfaces 2018, 10, 7315.  doi: 10.1021/acsami.7b15250

    44. [44]

      Xing, H.; Zhai, Q.; Zhang, X.; Li, J.; Wang, E. Anal. Chem. 2018, 90, 2141.  doi: 10.1021/acs.analchem.7b04428

    45. [45]

      Lei, Z.; Xu, S.; Wan, J.; Wu, P. Nanoscale 2015, 7, 18902.  doi: 10.1039/C5NR05960G

    46. [46]

      Li, H.; Tay, R. Y.; Tsang, S. H.; Zhen, X.; Teo, E. H. Small 2015, 11, 6491.  doi: 10.1002/smll.201501632

    47. [47]

      Angizi, S.; Hatamie, A.; Ghanbari, H.; Simchi, A. ACS Appl. Mater. Interfaces 2018, 10, 28819.  doi: 10.1021/acsami.8b07332

    48. [48]

      Yao, Q. H.; Feng, Y. F.; Rong, M. C.; He, S. G.; Chen, X. Microchim. Acta 2017, 184, 4217.  doi: 10.1007/s00604-017-2496-5

    49. [49]

      Huo, B.; Liu, B.; Chen, T.; Cui, L.; Xu, G.; Liu, M.; Liu, J. Langmuir 2017, 33, 10673.  doi: 10.1021/acs.langmuir.7b01699

  • 加载中
    1. [1]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    2. [2]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    3. [3]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    4. [4]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    5. [5]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    6. [6]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    16. [16]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

Metrics
  • PDF Downloads(80)
  • Abstract views(2602)
  • HTML views(623)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return