Citation: Chen Xinyu, Xie Junjie, Wang Wei, Yuan Huihui, Xu Di, Zhang Tao, He Yunlong, Shen Hujiang. Research Progress of Compositional Controlling Strategy to Perovskite for High Performance Solar Cells[J]. Acta Chimica Sinica, ;2019, 77(1): 9-23. doi: 10.6023/A18100447 shu

Research Progress of Compositional Controlling Strategy to Perovskite for High Performance Solar Cells

  • Corresponding author: Shen Hujiang, shenhujiang@mail.sic.ac.cn
  • Received Date: 29 October 2018
    Available Online: 26 January 2018

    Fund Project: Project supported by the Science and Technology Service Network Initiative (KFJ-SW-STS-152)the Science and Technology Service Network Initiative KFJ-SW-STS-152

Figures(14)

  • Over the past few years, the power conversion efficiency of perovskite solar cells have shown a tremendous progress from 3.8% in 2009 to 23.3% in 2018. Perovskites have exhibited excellent advantages in photovoltaic devices and other promising optoelectronic devices owing to their exceptional material properties, including direct and tunable bandgaps, strong light absorption, high electron/hole mobilities, long charge carrier lifetimes and diffusion lengths. The outstanding performance of perovskite solar cells is closely related with the deposition techniques and material composition of perovskite films. The preparation process of perovskite film is crucial for obtaining high efficiency devices, and it usually requires to fabricate a high coverage, compact and uniform perovskite layer. At present, the preparation technology of perovskite absorption layer mainly includes one-step processing, two-step processing, dual-source thermal evaporation processing, vapor-assisted solution processing and some scalable processing methods, and there are many reports and summaries about this work. However, perovskites still have some shortcomings such as insufficient light absorption range, poor long-term stability, the lead toxicity, which need to be overcome to realize higher power conversion efficiency and further product application. Compositional control engineering of perovskite materials becomes one of the effective ways to solve the above problems, but the summary of the research in this area is still lacking. In this review, we summarize the recent progress on the perovskite materials with different component systems, including organic-inorganic lead halide perovskite, all-inorganic lead halide perovskite, low-lead perovskite and lead-free perovskite. We also discuss some representative material compositions and the research on their corresponding preparation methods, the optimization of device structure and the effects on the device performance. Moreover, we compare and summarize the advantages and disadvantages of perovskite materials with different component systems. The purpose is to provide ideas on how to improve the efficiency and stability of perovskite solar cells through compositional controlling, and finally realize commercial application.
  • 加载中
    1. [1]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.  doi: 10.1021/ja809598r

    2. [2]

      Im, J. -H.; Lee, C. -R.; Lee, J. -W.; Park, S. -W.; Park, N. -G. Nanoscale 2011, 3, 4088.  doi: 10.1039/c1nr10867k

    3. [3]

      Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Gr tzel, M. J. Am. Chem. Soc. 2012, 134, 17396.  doi: 10.1021/ja307789s

    4. [4]

      Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gr tzel, M. Nature 2013, 499, 316.  doi: 10.1038/nature12340

    5. [5]

      Yang, W. S.; Park, B. -W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Science 2017, 356, 1376.  doi: 10.1126/science.aan2301

    6. [6]

      Rong, Y.; Mei, A.; Liu, L.; Li, X.; Han, H. Acta Chim. Sinica 2015, 73, 237(in Chinese).  doi: 10.3866/PKU.WHXB201411242
       

    7. [7]

      Zhang, T.; Zhao, Y. Acta Chim. Sinica 2015, 73, 202(in Chinese).
       

    8. [8]

      Guo, X.; Niu, G.; Wang, L. Acta Chim. Sinica 2015, 73, 211(in Chinese).  doi: 10.3866/PKU.WHXB201412231
       

    9. [9]

      Ye, S.; Liu, Z.; Bian, Z.; Huang, C. Acta Chim. Sinica 2015, 73, 193(in Chinese).
       

    10. [10]

      Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T. -Y.; Lee, Y. G.; Kim, G.; Shin, H. -W.; Seok, S. I.; Lee, J.; Seo, J. Nat. Energy 2018, 3, 682.  doi: 10.1038/s41560-018-0200-6

    11. [11]

      NREL efficiency chart. http://nrel.gov/ncpv/images/efficiency_chart.jpg.

    12. [12]

      Shao, Z.; Pan, X.; Zhang, X.; Ye, J.; Zhu, L.; Li, Y.; Ma, Y.; Huang, Y.; Zhu, J.; Hu, L.; Kong, F.; Dai, S. Acta Chim. Sinica 2015, 73, 267(in Chinese).
       

    13. [13]

      Xue, Q.; Sun, C.; Hu, Z.; Huang, F.; Yip, H. -L.; Cao, Y. Acta Chim. Sinica 2015, 73, 179(in Chinese).
       

    14. [14]

      Kim, H. -S.; Lee, C. -R.; Im, J. -H.; Lee, K. -B.; Moehl, T.; Marchioro, A.; Moon, S. -J.; Humphry-Baker, R.; Yum, J. -H.; Moser, J. E.; Gr tzel, M.; Park, N. -G. Sci. Rep. 2012, 2, 591.  doi: 10.1038/srep00591

    15. [15]

      Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.  doi: 10.1038/nature12509

    16. [16]

      Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. -S.; Wang, H. -H.; Liu, Y.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2014, 136, 622.  doi: 10.1021/ja411509g

    17. [17]

      Albero, J.; Asiri, A. M.; Garcia, H. J. Mater. Chem. A 2016, 4, 4353.  doi: 10.1039/C6TA00334F

    18. [18]

      Schilling, A.; Cantoni, M.; Guo, J. D.; Ott, H. R. Nature 1993, 363, 56.  doi: 10.1038/363056a0

    19. [19]

      Kieslich, G.; Sun, S.; Cheetham, A. K. Chem. Sci. 2014, 5, 4712.  doi: 10.1039/C4SC02211D

    20. [20]

      Filip, M. R.; Eperon, G. E.; Snaith, H. J.; Giustino, F. Nat. Commun. 2014, 5, 5757.  doi: 10.1038/ncomms6757

    21. [21]

      Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. Chem. Sci. 2016, 7, 4548.  doi: 10.1039/C5SC04845A

    22. [22]

      Gr tzel, M. Nat. Mater. 2014, 13, 838.  doi: 10.1038/nmat4065

    23. [23]

      Xie, J.; Liu, Y.; Liu, J.; Lei, L.; Gao, Q.; Li, J.; Yang, S. J. Power Sources 2015, 285, 349.  doi: 10.1016/j.jpowsour.2015.03.114

    24. [24]

      Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Gr tzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628.  doi: 10.1039/c3ta10518k

    25. [25]

      Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019.  doi: 10.1021/ic401215x

    26. [26]

      Yang, D.; Lv, J.; Zhao, X.; Xu, Q.; Fu, Y.; Zhan, Y.; Zunger, A.; Zhang, L. Chem. Mater. 2017, 29, 524.  doi: 10.1021/acs.chemmater.6b03221

    27. [27]

      Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Nat. Commun. 2014, 5, 5784.  doi: 10.1038/ncomms6784

    28. [28]

      Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. Angew. Chem., Int. Ed. Engl. 2014, 53, 9898.  doi: 10.1002/anie.201405334

    29. [29]

      Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Adv. Mater. 2014, 26, 6503.  doi: 10.1002/adma.201401685

    30. [30]

      Liu, J.; Gao, C.; He, X.; Ye, Q.; Ouyang, L.; Zhuang, D.; Liao, C.; Mei, J.; Lau, W. ACS Appl. Mater. Interfaces 2015, 7, 24008.  doi: 10.1021/acsami.5b06780

    31. [31]

      Ahn, N.; Son, D. -Y.; Jang, I. -H.; Kang, S. M.; Choi, M.; Park, N. -G. J. Am. Chem. Soc. 2015, 137, 8696.  doi: 10.1021/jacs.5b04930

    32. [32]

      Nam, J. K.; Chai, S. U.; Cha, W.; Choi, Y. J.; Kim, W.; Jung, M. S.; Kwon, J.; Kim, D.; Park, J. H. Nano Lett. 2017, 17, 2028.  doi: 10.1021/acs.nanolett.7b00050

    33. [33]

      Shin, S. S.; Yeom, E. J.; Yang, W. S.; Hur, S.; Kim, M. G.; Im, J.; Seo, J.; Noh, J. H.; Seok, S. I. Science 2017, 356, 167.  doi: 10.1126/science.aam6620

    34. [34]

      Koh, T. M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. J. Phys. Chem. C 2014, 118, 16458.  doi: 10.1021/jp411112k

    35. [35]

      Hanusch, F. C.; Wiesenmayer, E.; Mankel, E.; Binek, A.; Angloher, P.; Fraunhofer, C.; Giesbrecht, N.; Feckl, J. M.; Jaegermann, W.; Johrendt, D.; Bein, T.; Docampo, P. J. Phys. Chem. Lett. 2014, 5, 2791.  doi: 10.1021/jz501237m

    36. [36]

      Pang, S.; Hu, H.; Zhang, J.; Lv, S.; Yu, Y.; Wei, F.; Qin, T.; Xu, H.; Liu, Z.; Cui, G. Chem. Mater. 2014, 26, 1485.  doi: 10.1021/cm404006p

    37. [37]

      Lee, J. -W.; Seol, D. -J.; Cho, A. -N.; Park, N. -G. Adv. Mater. 2014, 26, 4991.  doi: 10.1002/adma.201401137

    38. [38]

      Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982.  doi: 10.1039/c3ee43822h

    39. [39]

      Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234.  doi: 10.1126/science.aaa9272

    40. [40]

      Pellet, N.; Gao, P.; Gregori, G.; Yang, T. -Y.; Nazeeruddin, M. K.; Maier, J.; Gr tzel, M. Angew. Chem., Int. Ed. 2014, 53, 3151.  doi: 10.1002/anie.201309361

    41. [41]

      Lee, J. -W.; Kim, D. -H.; Kim, H. -S.; Seo, S. -W.; Cho, S. M.; Park, N. -G. Adv. Energy Mater. 2015, 5, 1501310.  doi: 10.1002/aenm.201501310

    42. [42]

      Li, Z.; Yang, M.; Park, J. -S.; Wei, S. -H.; Berry, J. J.; Zhu, K. Chem. Mater. 2016, 28, 284.  doi: 10.1021/acs.chemmater.5b04107

    43. [43]

      Zhang, M.; Yun, J. S.; Ma, Q.; Zheng, J.; Lau, C. F. J.; Deng, X.; Kim, J.; Kim, D.; Seidel, J.; Green, M. A.; Huang, S.; Ho-Baillie, A. W. Y. ACS Energy Lett. 2017, 2, 438.  doi: 10.1021/acsenergylett.6b00697

    44. [44]

      De Marco, N.; Zhou, H.; Chen, Q.; Sun, P.; Liu, Z.; Meng, L.; Yao, E. -P.; Liu, Y.; Schiffer, A.; Yang, Y. Nano Lett. 2016, 16, 1009.  doi: 10.1021/acs.nanolett.5b04060

    45. [45]

      Jodlowski, A. D.; Roldan-Carmona, C.; Grancini, G.; Salado, M.; Ralaiarisoa, M.; Ahmad, S.; Koch, N.; Camacho, L.; de Miguel, G.; Nazeeruddin, M. K. Nat. Energy 2017, 2, 972.  doi: 10.1038/s41560-017-0054-3

    46. [46]

      Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.  doi: 10.1126/science.1228604

    47. [47]

      Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764.  doi: 10.1021/nl400349b

    48. [48]

      Docampo, P.; Hanusch, F. C.; Stranks, S. D.; Doeblinger, M.; Feckl, J. M.; Ehrensperger, M.; Minar, N. K.; Johnston, M. B.; Snaith, H. J.; Bein, T. Adv. Energy Mater. 2014, 4, 1400355.  doi: 10.1002/aenm.201400355

    49. [49]

      Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897.  doi: 10.1038/nmat4014

    50. [50]

      You, J.; Hong, Z.; Yang, Y.; Chen, Q.; Cai, M.; Song, T. -B.; Chen, C. -C.; Lu, S.; Liu, Y.; Zhou, H.; Yang, Y. ACS Nano 2014, 8, 1674.  doi: 10.1021/nn406020d

    51. [51]

      Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Nature 2015, 517, 476.  doi: 10.1038/nature14133

    52. [52]

      Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Gr tzel, M. Energy Environ. Sci. 2016, 9, 1989.  doi: 10.1039/C5EE03874J

    53. [53]

      McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hoerantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Science 2016, 351, 151.  doi: 10.1126/science.aad5845

    54. [54]

      Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Gr tzel, C.; Zakeeruddin, S. M.; Roethlisberger, U.; Gr tzel, M. Energy Environ. Sci. 2016, 9, 656.  doi: 10.1039/C5EE03255E

    55. [55]

      Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Science 2016, 354, 92.  doi: 10.1126/science.aag2700

    56. [56]

      Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. M.; Schulz, P.; Lin, L. Y.; Beard, M. C.; Luther, J. M. Sci. Adv. 2017, 3.
       

    57. [57]

      Wang, P.; Zhang, X.; Zhou, Y.; Jiang, Q.; Ye, Q.; Chu, Z.; Li, X.; Yang, X.; Yin, Z.; You, J. Nat. Commun. 2018, 9.

    58. [58]

      Wang, Y.; Zhang, T.; Kan, M.; Zhao, Y. J. Am. Chem. Soc. 2018, 140, 12345.  doi: 10.1021/jacs.8b07927

    59. [59]

      Duan, J.; Zhao, Y.; He, B.; Tang, Q. Small 2018, 14, 1704443.  doi: 10.1002/smll.v14.20

    60. [60]

      Duan, J.; Zhao, Y.; He, B.; Tang, Q. Angew. Chem., Int. Ed. 2018, 57, 3787.  doi: 10.1002/anie.201800019

    61. [61]

      Duan, J.; Hu, T.; Zhao, Y.; He, B.; Tang, Q. Angew. Chem., Int. Ed. 2018, 57, 5746.  doi: 10.1002/anie.201801837

    62. [62]

      Duan, J.; Zhao, Y.; Yang, X.; Wang, Y.; He, B.; Tang, Q. Adv. Energy Mater. 2018, 8, 1802346.  doi: 10.1002/aenm.v8.31

    63. [63]

      Yin, G.; Zhao, H.; Jiang, H.; Yuan, S.; Niu, T.; Zhao, K.; Liu, Z.; Liu, S. Adv. Funct. Mater. 2018, 28, 1803269.  doi: 10.1002/adfm.v28.39

    64. [64]

      Bai, D.; Bian, H.; Jin, Z.; Wang, H.; Meng, L.; Wang, Q.; Liu, S. Nano Energy 2018, 52, 408.  doi: 10.1016/j.nanoen.2018.08.012

    65. [65]

      Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T.; Hayase, S. J. Phys. Chem. Lett. 2014, 5, 1004.  doi: 10.1021/jz5002117

    66. [66]

      Hao, F.; Stoumpos, C. C.; Chang, R. P. H.; Kanatzidis, M. G. J. Am. Chem. Soc. 2014, 136, 8094.  doi: 10.1021/ja5033259

    67. [67]

      Zuo, F.; Williams, S. T.; Liang, P. -W.; Chueh, C. -C.; Liao, C. -Y.; Jen, A. K. Y. Adv. Mater. 2014, 26, 6454.  doi: 10.1002/adma.201401641

    68. [68]

      Liao, W.; Zhao, D.; Yu, Y.; Shrestha, N.; Ghimire, K.; Grice, C. R.; Wang, C.; Xiao, Y.; Cimaroli, A. J.; Ellingson, R. J.; Podraza, N. J.; Zhu, K.; Xiong, R. -G.; Yan, Y. J. Am. Chem. Soc. 2016, 138, 12360.  doi: 10.1021/jacs.6b08337

    69. [69]

      Hao, F.; Stoumpos, C. C.; Duyen Hanh, C.; Chang, R. P. H.; Kanatzidis, M. G. Nat. Photonics 2014, 8, 489.  doi: 10.1038/nphoton.2014.82

    70. [70]

      Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. -A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; Petrozza, A.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 3061.  doi: 10.1039/C4EE01076K

    71. [71]

      Krishnamoorthy, T.; Ding, H.; Yan, C.; Leong, W. L.; Baikie, T.; Zhang, Z.; Sherburne, M.; Li, S.; Asta, M.; Mathews, N.; Mhaisalkar, S. G. J. Mater. Chem. A 2015, 3, 23829.  doi: 10.1039/C5TA05741H

    72. [72]

      Park, B. -W.; Philippe, B.; Zhang, X.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Adv. Mater. 2015, 27, 6806.  doi: 10.1002/adma.201501978

    73. [73]

      Lyu, M.; Yun, J. -H.; Cai, M.; Jiao, Y.; Bernhardt, P. V.; Zhang, M.; Wang, Q.; Du, A.; Wang, H.; Liu, G.; Wang, L. Nano Res. 2016, 9, 692.  doi: 10.1007/s12274-015-0948-y

    74. [74]

      Bai, F.; Hu, Y.; Hu, Y.; Qiu, T.; Miao, X.; Zhang, S. Sol. Energy Mater. Sol. Cells 2018, 184, 15.  doi: 10.1016/j.solmat.2018.04.032

    75. [75]

      Saliba, M.; Correa-Baena, J. -P.; Gr tzel, M.; Hagfeldt, A.; Abate, A. Angew. Chem., Int. Ed. 2018, 57, 2554.  doi: 10.1002/anie.201703226

    76. [76]

      Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nano Lett. 2015, 15, 3692.  doi: 10.1021/nl5048779

    77. [77]

      Zhao, B.; Abdi-Jalebi, M.; Tabachnyk, M.; Glass, H.; Kamboj, V. S.; Nie, W.; Pearson, A. J.; Puttisong, Y.; Godel, K. C.; Beere, H. E.; Ritchie, D. A.; Mohite, A. D.; Dutton, S. E.; Friend, R. H.; Sadhanala, A. Adv. Mater. 2017, 29.

    78. [78]

      Hardin, B. E.; Snaith, H. J.; McGehee, M. D. Nat. Photonics 2012, 6, 162.  doi: 10.1038/nphoton.2012.22

    79. [79]

      Leijtens, T.; Stranks, S. D.; Eperon, G. E.; Lindblad, R.; Johansson, E. M. J.; McPherson, I. J.; Rensmo, H.; Ball, J. M.; Lee, M. M.; Snaith, H. J. ACS Nano 2014, 8, 7147.  doi: 10.1021/nn502115k

    80. [80]

      Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Gr tzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344.  doi: 10.1126/science.1243167

    81. [81]

      Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341.  doi: 10.1126/science.1243982

    82. [82]

      Zhang, W.; Eperon, G. E.; Snaith, H. J. Nat. Energy 2016, 1, 16048.  doi: 10.1038/nenergy.2016.48

    83. [83]

      Ishihara, T. J. Lumin. 1994, 60-1, 269.
       

    84. [84]

      Hirasawa, M.; Ishihara, T.; Goto, T.; Uchida, K.; Miura, N. Phys. B 1994, 201, 427.  doi: 10.1016/0921-4526(94)91130-4

    85. [85]

      D'Innocenzo, V.; Grancini, G.; Alcocer, M. J. P.; Kandada, A. R. S.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A. Nat. Commun. 2014, 5.

    86. [86]

      Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T. C.; Lam, Y. M. Energy Environ. Sci. 2014, 7, 399.  doi: 10.1039/C3EE43161D

    87. [87]

      Borriello, I.; Cantele, G.; Ninno, D. Phys. Rev. B 2008, 77, 235214.  doi: 10.1103/PhysRevB.77.235214

    88. [88]

      Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. -S.; Chang, J. A.; Lee, Y. H.; Kim, H. -j.; Sarkar, A.; Nazeeruddin, M. K.; Gr tzel, M.; Seok, S. I. Nat. Photonics 2013, 7, 487.

    89. [89]

      Im, J. -H.; Jang, I. -H.; Pellet, N.; Gr tzel, M.; Park, N. -G. Nat. Nanotechnol. 2014, 9, 927.  doi: 10.1038/nnano.2014.181

    90. [90]

      Liu, D.; Kelly, T. L. Nat. Photonics 2014, 8, 133.  doi: 10.1038/nphoton.2013.342

    91. [91]

      Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Science 2015, 347, 967.  doi: 10.1126/science.aaa5760

    92. [92]

      Sun, W.; Li, Y.; Yan, W.; Peng, H.; Ye, S.; Rao, H.; Zhao, Z.; Liu, Z.; Bian, Z.; Huang, C. Chin. J. Chem. 2017, 35, 687.  doi: 10.1002/cjoc.v35.5

    93. [93]

      Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510.  doi: 10.1063/1.1736034

    94. [94]

      Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J. Energy Environ. Sci. 2014, 7, 2619.  doi: 10.1039/C4EE01138D

    95. [95]

      Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L. Energy Environ. Sci. 2014, 7, 2934.  doi: 10.1039/C4EE01624F

    96. [96]

      Rong, Y.; Tang, Z.; Zhao, Y.; Zhong, X.; Venkatesan, S.; Graham, H.; Patton, M.; Jing, Y.; Guloy, A. M.; Yao, Y. Nanoscale 2015, 7, 10595.  doi: 10.1039/C5NR02866C

    97. [97]

      Son, D. Y.; Lee, J. W.; Choi, Y. J.; Jang, I. H.; Lee, S.; Yoo, P. J.; Shin, H.; Ahn, N.; Choi, M.; Kim, D.; Park, N. G. Nat. Energy 2016, 1, 16081.  doi: 10.1038/nenergy.2016.81

    98. [98]

      Saliba, M.; Matsui, T.; Seo, J. -Y.; Domanski, K.; Correa-Baena, J. -P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Gr tzel, M. Energy Environ. Sci. 2016, 9, 1989.  doi: 10.1039/C5EE03874J

    99. [99]

      Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. -Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J. -P.; Tress, W. R.; Abate, A.; Hagfeldt, A.; Gr tzel, M. Science 2016, 354, 206.  doi: 10.1126/science.aah5557

    100. [100]

      Giorgi, G.; Fujisawa, J. -I.; Segawa, H.; Yamashita, K. J. Phys. Chem. C 2015, 119, 4694.  doi: 10.1021/acs.jpcc.5b00051

    101. [101]

      Kubicki, D. J.; Prochowicz, D.; Hofstetter, A.; Saski, M.; Yadav, P.; Bi, D.; Pellet, N.; Lewinski, J.; Zakeeruddin, S. M.; Gr tzel, M.; Emsley, L. J. Am. Chem. Soc. 2018, 140, 3345.  doi: 10.1021/jacs.7b12860

    102. [102]

      Poorkazem, K.; Kelly, T. L. Sustainable Energy Fuels 2018, 2, 1332.  doi: 10.1039/C8SE00127H

    103. [103]

      Stoddard, R. J.; Rajagopal, A.; Palmer, R. L.; Braly, I. L.; Jen, A. K. Y.; Hillhouse, H. W. ACS Energy Lett. 2018, 3, 1261.  doi: 10.1021/acsenergylett.8b00576

    104. [104]

      Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D. -D.; Higler, R.; Huettner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatuere, M.; Phillips, R. T.; Friend, R. H. J. Phys. Chem. Lett. 2014, 5, 1421.  doi: 10.1021/jz5005285

    105. [105]

      Zhao, Y.; Zhu, K. J. Phys. Chem. C 2014, 118, 9412.  doi: 10.1021/jp502696w

    106. [106]

      Yu, H.; Wang, F.; Xie, F.; Li, W.; Chen, J.; Zhao, N. Adv. Funct. Mater. 2014, 24, 7102.
       

    107. [107]

      Conings, B.; Babayigit, A.; Klug, M. T.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J. T. -W.; Verbeeck, J.; Boyen, H. -G.; Snaith, H. J. Adv. Mater. 2016, 28, 10701.  doi: 10.1002/adma.201603747

    108. [108]

      Yusoff, A. R. B. M.; Kim, H. P.; Li, X.; Kim, J.; Jang, J.; Nazeeruddin, M. K. Adv. Mater. 2017, 29, 1602940.  doi: 10.1002/adma.201602940

    109. [109]

      Baena, J. P. C.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T. J.; Kandada, A. R. S.; Zakeeruddin, S. M.; Petrozza, A.; Abate, A.; Nazeeruddin, M. K.; Gr tzel, M.; Hagfeldt, A. Energy Environ. Sci. 2015, 8, 2928.  doi: 10.1039/C5EE02608C

    110. [110]

      Li, X.; Bi, D.; Yi, C.; Decoppet, J. -D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Gr tzel, M. Science 2016, 353, 58.  doi: 10.1126/science.aaf8060

    111. [111]

      Bi, D.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Baena, J. -P. C.; Decoppet, J. -D.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Gr tzel, M.; Hagfeldt, A. Sci. Adv. 2016, 2, 7.

    112. [112]

      Bi, D.; Yi, C.; Luo, J.; Decoppet, J. -D.; Zhang, F.; Zakeeruddin, S. M.; Li, X.; Hagfeldt, A.; Gr tzel, M. Nat. Energy 2016, 1, 16142.  doi: 10.1038/nenergy.2016.142

    113. [113]

      Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; De Angelis, F.; Boyen, H. -G. Adv. Energy Mater. 2015, 5, 1500477.  doi: 10.1002/aenm.201500477

    114. [114]

      Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. J. Phys. Chem. Lett. 2016, 7, 167.  doi: 10.1021/acs.jpclett.5b02597

    115. [115]

      Kulbak, M.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2015, 6, 2452.  doi: 10.1021/acs.jpclett.5b00968

    116. [116]

      Eperon, G. E.; Paterno, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. J. Mater. Chem. A 2015, 3, 19688.  doi: 10.1039/C5TA06398A

    117. [117]

      Ripolles, T. S.; Nishinaka, K.; Ogomi, Y.; Miyata, Y.; Hayase, S. Sol. Energy Mater. Sol. Cells 2016, 144, 532.  doi: 10.1016/j.solmat.2015.09.041

    118. [118]

      Zhang, D.; Eaton, S. W.; Yu, Y.; Dou, L.; Yang, P. J. Am. Chem. Soc. 2015, 137, 9230.  doi: 10.1021/jacs.5b05404

    119. [119]

      Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. J. Am. Chem. Soc. 2015, 137, 10276.  doi: 10.1021/jacs.5b05602

    120. [120]

      Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Adv. Mater. 2015, 27, 7162.  doi: 10.1002/adma.201502567

    121. [121]

      Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H. Adv. Funct. Mater. 2016, 26, 2435.  doi: 10.1002/adfm.v26.15

    122. [122]

      Moller, C. K. Nature 1958, 182, 1436.
       

    123. [123]

      Dastidar, S.; Egger, D. A.; Tan, L. Z.; Cromer, S. B.; Dillon, A. D.; Liu, S.; Kronik, L.; Rappe, A. M.; Fafarman, A. T. Nano Lett. 2016, 16, 3563.  doi: 10.1021/acs.nanolett.6b00635

    124. [124]

      Lin, J.; Lai, M.; Dou, L.; Kley, C. S.; Chen, H.; Peng, F.; Sun, J.; Lu, D.; Hawks, S. A.; Xie, C.; Cui, F.; Alivisatos, A. P.; Limmer, D. T.; Yang, P. Nat. Mater. 2018, 17, 261.  doi: 10.1038/s41563-017-0006-0

    125. [125]

      Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. J. Phys. Chem. Lett. 2016, 7, 746.  doi: 10.1021/acs.jpclett.6b00002

    126. [126]

      Zhang, T.; Dar, M. I.; Li, G.; Xu, F.; Guo, N.; Gr tzel, M.; Zhao, Y. Sci. Adv. 2017, 3, e1700841.  doi: 10.1126/sciadv.1700841

    127. [127]

      Hu, Y.; Bai, F.; Liu, X.; Ji, Q.; Miao, X.; Qiu, T.; Zhang, S. ACS Energy Lett. 2017, 2, 2219.  doi: 10.1021/acsenergylett.7b00508

    128. [128]

      Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Horantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T.; Snaith, H. J. Adv. Energy Mater. 2016, 6, 1502458.  doi: 10.1002/aenm.201502458

    129. [129]

      Wang, Y.; Zhang, T.; Xu, F.; Li, Y.; Zhao, Y. Sol. RRL 2018, 2, 1700180.  doi: 10.1002/solr.201700180

    130. [130]

      Ma, Q.; Huang, S.; Chen, S.; Zhang, M.; Lau, C. F. J.; Lockrey, M. N.; Mulmudi, H. K.; Shan, Y.; Yao, J.; Zheng, J.; Deng, X.; Catchpole, K.; Green, M. A.; Ho-Baillie, A. W. Y. J. Phys. Chem. C 2017, 121, 19642.  doi: 10.1021/acs.jpcc.7b06268

    131. [131]

      Chen, C. -Y.; Lin, H. -Y.; Chiang, K. -M.; Tsai, W. -L.; Huang, Y. -C.; Tsao, C. -S.; Lin, H. -W. Adv. Mater. 2017, 29, 1605290.  doi: 10.1002/adma.v29.12

    132. [132]

      Mariotti, S.; Hutter, O. S.; Phillips, L. J.; Yates, P. J.; Kundu, B.; Durose, K. ACS Appl. Mater. Interfaces 2018, 10, 3750.  doi: 10.1021/acsami.7b14039

    133. [133]

      Zhang, J.; Bai, D.; Jin, Z.; Bian, H.; Wang, K.; Sun, J.; Wang, Q.; Liu, S. Adv. Energy Mater. 2018, 8, 1703246.  doi: 10.1002/aenm.v8.15

    134. [134]

      Liu, C.; Li, W.; Zhang, C.; Ma, Y.; Fan, J.; Mai, Y. J. Am. Chem. Soc. 2018, 140, 3825.  doi: 10.1021/jacs.7b13229

    135. [135]

      Yan, L.; Xue, Q.; Liu, M.; Zhu, Z.; Tian, J.; Li, Z.; Chen, Z.; Chen, Z.; Yan, H.; Yip, H. -L.; Cao, Y. Adv. Mater. 2018, 30, 1802509.  doi: 10.1002/adma.v30.33

    136. [136]

      Bai, D.; Zhang, J.; Jin, Z.; Bian, H.; Wang, K.; Wang, H.; Liang, L.; Wang, Q.; Liu, S. F. ACS Energy Lett. 2018, 3, 970.  doi: 10.1021/acsenergylett.8b00270

    137. [137]

      Bian, H.; Bai, D.; Jin, Z.; Wang, K.; Liang, L.; Wang, H.; Zhang, J.; Wang, Q.; Liu, S. Joule 2018, 2, 1500.  doi: 10.1016/j.joule.2018.04.012

    138. [138]

      Liang, J.; Wang, C.; Wang, Y.; Xu, Z.; Lu, Z.; Ma, Y.; Zhu, H.; Hu, Y.; Xiao, C.; Yi, X.; Zhu, G.; Lv, H.; Ma, L.; Chen, T.; Tie, Z.; Jin, Z.; Liu, J. J. Am. Chem. Soc. 2016, 138, 15829.  doi: 10.1021/jacs.6b10227

    139. [139]

      Zhou, S.; Tang, R.; Yin, L. Adv. Mater. 2017, 29, 1703682.  doi: 10.1002/adma.201703682

    140. [140]

      Yang, Z.; Rajagopal, A.; Chueh, C. -C.; Jo, S. B.; Liu, B.; Zhao, T.; Jen, A. K. Y. Adv. Mater. 2016, 28, 8990.  doi: 10.1002/adma.v28.40

    141. [141]

      Eperon, G. E.; Leijtens, T.; Bush, K. A.; Prasanna, R.; Green, T.; Wang, J. T. -W.; McMeekin, D. P.; Volonakis, G.; Milot, R. L.; May, R.; Palmstrom, A.; Slotcavage, D. J.; Belisle, R. A.; Patel, J. B.; Parrott, E. S.; Sutton, R. J.; Ma, W.; Moghadam, F.; Conings, B.; Babayigit, A.; Boyen, H. -G.; Bent, S.; Giustino, F.; Herz, L. M.; Johnston, M. B.; McGehee, M. D.; Snaith, H. J. Science 2016, 354, 861.  doi: 10.1126/science.aaf9717

    142. [142]

      Konstantakou, M.; Stergiopoulos, T. J. Mater. Chem. A 2017, 5, 11518.  doi: 10.1039/C7TA00929A

    143. [143]

      Mitzi, D. B. Prog. Inorg. Chem. 1999, 48, 1.
       

    144. [144]

      Hodes, G. Science 2013, 342, 317.  doi: 10.1126/science.1245473

    145. [145]

      Mitzi, D. B.; Dimitrakopoulos, C. D.; Kosbar, L. L. Chem. Mater. 2001, 13, 3728.  doi: 10.1021/cm010105g

    146. [146]

      Hu, H.; Dong, B.; Zhang, W. J. Mater. Chem. A 2017, 5, 11436.  doi: 10.1039/C7TA00269F

    147. [147]

      Stoumpos, C. C.; Frazer, L.; Clark, D. J.; Kim, Y. S.; Rhim, S. H.; Freeman, A. J.; Ketterson, J. B.; Jang, J. I.; Kanatzidis, M. G. J. Am. Chem. Soc. 2015, 137, 6804.  doi: 10.1021/jacs.5b01025

    148. [148]

      Sun, P. -P.; Li, Q. -S.; Yang, L. -N.; Li, Z. -S. Nanoscale 2016, 8, 1503.  doi: 10.1039/C5NR05337D

    149. [149]

      Saparov, B.; Mitzi, D. B. Chem. Rev. 2016, 116, 4558.  doi: 10.1021/acs.chemrev.5b00715

    150. [150]

      Giustino, F.; Snaith, H. J. ACS Energy Lett. 2016, 1, 1233.  doi: 10.1021/acsenergylett.6b00499

    151. [151]

      Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. J. Am. Chem. Soc. 2016, 138, 2138.  doi: 10.1021/jacs.5b13294

    152. [152]

      McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M. Chem. Mater. 2016, 28, 1348.  doi: 10.1021/acs.chemmater.5b04231

    153. [153]

      Volonakis, G.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Snaith, H. J.; Giustino, F. J. Phys. Chem. Lett. 2016, 7, 1254.  doi: 10.1021/acs.jpclett.6b00376

    154. [154]

      Wei, F.; Deng, Z.; Sun, S.; Xie, F.; Kieslich, G.; Evans, D. M.; Carpenter, M. A.; Bristowe, P. D.; Cheetham, A. K. Mater. Horiz. 2016, 3, 328.  doi: 10.1039/C6MH00053C

    155. [155]

      Filip, M. R.; Hillman, S.; Haghighirad, A. A.; Snaith, H. J.; Giustino, F. J. Phys. Chem. Lett. 2016, 7, 2579.  doi: 10.1021/acs.jpclett.6b01041

    156. [156]

      Du, K. -z.; Meng, W.; Wang, X.; Yan, Y.; Mitzi, D. B. Angew. Chem., Int. Ed. 2017, 56, 8158.  doi: 10.1002/anie.201703970

    157. [157]

      Li, Q.; Wang, Y.; Pan, W.; Yang, W.; Zou, B.; Tang, J.; Quan, Z. Angew. Chem., Int. Ed. 2017, 56, 15969.  doi: 10.1002/anie.201708684

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    11. [11]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    12. [12]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    13. [13]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(116)
  • Abstract views(4246)
  • HTML views(1265)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return