Citation: Wang Hao, Wu Pinru, Zhao Xiang, Zeng Jing, Wan Qian. Advances on Photo-Promoted Glycosylation Reactions[J]. Acta Chimica Sinica, ;2019, 77(3): 231-241. doi: 10.6023/A18100429 shu

Advances on Photo-Promoted Glycosylation Reactions

  • Corresponding author: Wan Qian, wanqian@hust.edu.cn
  • Received Date: 16 October 2018
    Available Online: 25 March 2018

    Fund Project: the National Natural Science Foundation of China 21472054the National Natural Science Foundation of China 21761132014the State Key Laboratory of Bio-organic and Natural Products Chemistry SKLBNPC13425Project supported by the National Natural Science Foundation of China (Nos. 21472054, 21761132014, 21772050, 21702068), the State Key Laboratory of Bio-organic and Natural Products Chemistry (No. SKLBNPC13425) and Wuhan Creative Talent Development Fundthe National Natural Science Foundation of China 21702068the National Natural Science Foundation of China 21772050

Figures(21)

  • Carbohydrates, along with proteins and nucleic acids are known as basic life substances, which not only are the energy source and structure material, but also play an extremely important role in many biochemical processes, such as molecules recognition, information transformation in cells, interactions in immune response, differentiation and apoptosis of cells, etc. Compared to proteins and nucleic acids, the synthesis of oligosaccharides in chemical or enzymatic ways is more difficult, due to their diversified and complicated structures. Recently photo especially visible light promoted organic synthesis has become one of the fastest growing fields in organic chemistry attributed to its environmental friendliness, easy availability and low cost. This chemistry has also been applied to the photo-mediated glycosylation reactions by using various light sources (ultraviolet, visible light), photosensitizers (or photocatalysts), and additives (oxidants, reductants etc.), which provides milder and more effective ways for oligosaccharide assembly. To help chemists understand this field, we briefly reviewed recent advances and potential applications of photo-mediated glycosylation reactions according to their types (e.g. light sources, photosensitizers). In this review, we also detailly described the mechanisms and highlighted the advantages and limitations of these reactions. In addition, the further prospects of this area are proposed.
  • 加载中
    1. [1]

    2. [2]

      Guo, Z.; Wang, L. Prog. Chem. 1995, 7, 10.

    3. [3]

      Varki, A.; Cummings, R.-D.; Esko, J.-D.; Freeze, H.-H.; Stanley, P.; Bertozzi, C.-R.; Hart, G.-W.; Etzler, M.-E. Essential of Glycobiology, Cold Spring Harbor Laboratory Press, 2008, pp. 1~21.

    4. [4]

      Chen, L.-Q.; Lai, D.; Song, Z.-W.; Zhao, X.-E.; Kong, F.-Z. Chin. J. Org. Chem. 2006, 26, 627.

    5. [5]

      Fischer, E. Chem. Ber. 1893, 26, 2400.  doi: 10.1002/(ISSN)1099-0682

    6. [6]

      (a) Koenigs, W.; Knorr, E. Chem. Ber. 1901, 34, 957. (b) Schmidt, R. R.; Michel, J. Angew. Chem. 1980, 92, 763. (c) Geng, Y.; Zhang, L. -H.; Ye, X. -S. Chem. Commun. 2008, 5, 597. (d) Raghavan, S.; Kahne, D. J. Am. Chem. Soc. 1993, 115, 1580. (e) Tang, Y.; Li, J.; Zhu, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2013, 135, 18396.

    7. [7]

      (a) Shu, P.; Xiao, X.; Zhao, Y.; Xu, Y.; Yao, W.; Tao, J.; Wang, H.; Yao, G.; Lu, Z.; Zeng, J.; Wan, Q. Angew. Chem.,Int. Ed. 2015, 54, 14432. (b) Xiao, X.; Zhao, Y.; Shu, P.; Zhao, X.; Liu, Y.; Sun, J.; Zhang, Q.; Zeng, J.; Wan, Q. J. Am. Chem. Soc. 2016, 138, 13402. (c) Hu, Y.; Yu, K.; Shi, L.-L.; Liu, L.; Sui, J.-J.; Liu, D.-Y.; Xiong, B.; Sun, J.-S. J. Am. Chem. Soc. 2017, 139, 12736. (d) Wang, H.-Y.; Simmons, C. J.; Blaszczyk, S. A.; Balzer, P. G.; Luo, R.; Duan, X.; Tang, W. Angew. Chem. , Int. Ed. 2017, 56, 15698. (e) Wadzinski, T. J.; Steinauer, A.; Hie, L.; Pelletier, G.; Schepartz, A.; Miller, S. J. Nature Chem. 2018, 10, 644.

    8. [8]

    9. [9]

      Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.  doi: 10.1126/science.1161976

    10. [10]

      Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886.  doi: 10.1021/ja805387f

    11. [11]

      Nguyen, J. D.; D'Amato, E. M.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2012, 4, 854.  doi: 10.1038/nchem.1452

    12. [12]

      Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.  doi: 10.1002/anie.201200223

    13. [13]

    14. [14]

      Yamago, S.; Miyazoe, H.; Yoshida, J.-i. Tetrahedron Lett. 1999, 40, 2339.  doi: 10.1016/S0040-4039(99)00181-1

    15. [15]

      Nakanishi, M.; Takahashi, D.; Toshima, K. Org. Biomol. Chem. 2013, 11, 5079.  doi: 10.1039/c3ob41143e

    16. [16]

      Mao, R.-Z.; Guo, F.; Xiong, D.-C.; Li, Q.; Duan, J.; Ye, X.-S. Org. Lett. 2015, 17, 5606.  doi: 10.1021/acs.orglett.5b02823

    17. [17]

      Mao, R.-Z.; Xiong, D.-C.; Guo, F.; Li, Q.; Duan, J.; Ye, X.-S. Org. Chem. Front. 2016, 3, 737.  doi: 10.1039/C6QO00021E

    18. [18]

      Hashimoto, S.; Kurimoto, I.; Fujii, Y.; Noyori, R. J. Am. Chem. Soc. 1985, 107, 1427.  doi: 10.1021/ja00291a062

    19. [19]

      Griffin, G. W.; Bandara, N. C.; Clarke, M. A.; Tsang, W.-S.; Ga-regg, P.J.; Oscarson, S.; Silwanis, B. A. Heterocycles 1990, 30, 939.  doi: 10.3987/COM-89-S89

    20. [20]

      Furuta, T.; Takeuchi, K.; Iwamura, M. Chem. Commun. 1996, 147, 157.

    21. [21]

      Cumpstey, I.; Crich, D. J.Carbohydr. Chem.2011, 30, 469.  doi: 10.1080/07328303.2011.601533

    22. [22]

      Iwata, R.; Uda, K.; Takahashi, D.; Toshima, K. Chem. Commun. 2014, 50, 10695.  doi: 10.1039/C4CC04753B

    23. [23]

      Kimura, T.; Eto, T.; Takahashi, D.; Toshima, K. Org. Lett. 2016, 18, 3190.  doi: 10.1021/acs.orglett.6b01404

    24. [24]

      (a) Balmond, E. I.; Coe, D. M.; Galan, M. C.; McGarrigle, E. M. Angew. Chem. , Int. Ed.2012, 51, 9152.(b) Balmond, E. I.; Benito-Alifonso, D.; Coe, D. M.; Alder, R. W.; McGarrigle, E. M.; Galan, M. C.Angew. Chem., Int. Ed.2014, 53, 8190.(c) Sau, A.; Williams, R.; Palo-Nieto, C.; Franconetti, A.; Medina, S.; Galan, M. C.Angew. Chem., Int. Ed.2017, 56, 3640. (d) Palo-Nieto, C.; Sau, A.; Galan, M. C. J. Am. Chem. Soc. 2017, 139, 14041.

    25. [25]

      Zhao, G.; Wang, T. Angew. Chem., Int. Ed. 2018, 57, 6120.  doi: 10.1002/anie.201800909

    26. [26]

      Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2010, 49, 7274.  doi: 10.1002/anie.v49:40

    27. [27]

      Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2012, 51, 4140.  doi: 10.1002/anie.201200593

    28. [28]

      Spell, M.; Wang, X.; Wahba, A. E.; Conner, E.; Ragains, J. Carbohydr. Res. 2013, 369, 42.  doi: 10.1016/j.carres.2013.01.004

    29. [29]

      Wever, W. J.; Cinelli, M. A.; Bowers, A. A. Org. Lett. 2013, 15, 30.  doi: 10.1021/ol302941q

    30. [30]

      Yu, Y.; Xiong, D.-C.; Mao, R.-Z.; Ye, X.-S. J. Org. Chem. 2016, 8, 7134.
       

    31. [31]

      Zhu, Q.; Gentry, E. C.; Knowles, R. R. Angew. Chem., Int. Ed. 2016, 55, 9969.  doi: 10.1002/anie.201604619

    32. [32]

      Wen, P.; Crich, D. Org. Lett. 2017, 19, 2402.  doi: 10.1021/acs.orglett.7b00932

    33. [33]

      Ye, H.; Xiao, C.; Zhou, Q.-Q.; Wang, P. G.; Xiao, W.-J. J. Org. Chem. 2018, 83, 13325.  doi: 10.1021/acs.joc.8b02129

    34. [34]

      (a) Arceo, E.; Jurberg, I. D.; Álvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750.(b) Lima, C. G. S.; Lima, T. de M.; Duarte, M.; Jurberg, I. D.; Paixão, M. W.ACS Catal. 2016, 6, 1389.

    35. [35]

      Spell, M. L.; Deveaux, K.; Bresnahan, C. G.; Bernard, B. L.; Sheffield, W.; Kumar, R.; Ragains, J. R. Angew. Chem., Int. Ed. 2016, 55, 6515.  doi: 10.1002/anie.201601566

  • 加载中
    1. [1]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    2. [2]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    3. [3]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    4. [4]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    5. [5]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Qin Li Ziyao Jia Ye Chen Mingze Ma Lin Li Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(57)
  • Abstract views(2647)
  • HTML views(570)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return