Citation: Wang Hao, Wu Pinru, Zhao Xiang, Zeng Jing, Wan Qian. Advances on Photo-Promoted Glycosylation Reactions[J]. Acta Chimica Sinica, ;2019, 77(3): 231-241. doi: 10.6023/A18100429 shu

Advances on Photo-Promoted Glycosylation Reactions

  • Corresponding author: Wan Qian, wanqian@hust.edu.cn
  • Received Date: 16 October 2018
    Available Online: 25 March 2018

    Fund Project: the National Natural Science Foundation of China 21472054the National Natural Science Foundation of China 21761132014the State Key Laboratory of Bio-organic and Natural Products Chemistry SKLBNPC13425Project supported by the National Natural Science Foundation of China (Nos. 21472054, 21761132014, 21772050, 21702068), the State Key Laboratory of Bio-organic and Natural Products Chemistry (No. SKLBNPC13425) and Wuhan Creative Talent Development Fundthe National Natural Science Foundation of China 21702068the National Natural Science Foundation of China 21772050

Figures(21)

  • Carbohydrates, along with proteins and nucleic acids are known as basic life substances, which not only are the energy source and structure material, but also play an extremely important role in many biochemical processes, such as molecules recognition, information transformation in cells, interactions in immune response, differentiation and apoptosis of cells, etc. Compared to proteins and nucleic acids, the synthesis of oligosaccharides in chemical or enzymatic ways is more difficult, due to their diversified and complicated structures. Recently photo especially visible light promoted organic synthesis has become one of the fastest growing fields in organic chemistry attributed to its environmental friendliness, easy availability and low cost. This chemistry has also been applied to the photo-mediated glycosylation reactions by using various light sources (ultraviolet, visible light), photosensitizers (or photocatalysts), and additives (oxidants, reductants etc.), which provides milder and more effective ways for oligosaccharide assembly. To help chemists understand this field, we briefly reviewed recent advances and potential applications of photo-mediated glycosylation reactions according to their types (e.g. light sources, photosensitizers). In this review, we also detailly described the mechanisms and highlighted the advantages and limitations of these reactions. In addition, the further prospects of this area are proposed.
  • 加载中
    1. [1]

    2. [2]

      Guo, Z.; Wang, L. Prog. Chem. 1995, 7, 10.

    3. [3]

      Varki, A.; Cummings, R.-D.; Esko, J.-D.; Freeze, H.-H.; Stanley, P.; Bertozzi, C.-R.; Hart, G.-W.; Etzler, M.-E. Essential of Glycobiology, Cold Spring Harbor Laboratory Press, 2008, pp. 1~21.

    4. [4]

      Chen, L.-Q.; Lai, D.; Song, Z.-W.; Zhao, X.-E.; Kong, F.-Z. Chin. J. Org. Chem. 2006, 26, 627.

    5. [5]

      Fischer, E. Chem. Ber. 1893, 26, 2400.  doi: 10.1002/(ISSN)1099-0682

    6. [6]

      (a) Koenigs, W.; Knorr, E. Chem. Ber. 1901, 34, 957. (b) Schmidt, R. R.; Michel, J. Angew. Chem. 1980, 92, 763. (c) Geng, Y.; Zhang, L. -H.; Ye, X. -S. Chem. Commun. 2008, 5, 597. (d) Raghavan, S.; Kahne, D. J. Am. Chem. Soc. 1993, 115, 1580. (e) Tang, Y.; Li, J.; Zhu, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2013, 135, 18396.

    7. [7]

      (a) Shu, P.; Xiao, X.; Zhao, Y.; Xu, Y.; Yao, W.; Tao, J.; Wang, H.; Yao, G.; Lu, Z.; Zeng, J.; Wan, Q. Angew. Chem.,Int. Ed. 2015, 54, 14432. (b) Xiao, X.; Zhao, Y.; Shu, P.; Zhao, X.; Liu, Y.; Sun, J.; Zhang, Q.; Zeng, J.; Wan, Q. J. Am. Chem. Soc. 2016, 138, 13402. (c) Hu, Y.; Yu, K.; Shi, L.-L.; Liu, L.; Sui, J.-J.; Liu, D.-Y.; Xiong, B.; Sun, J.-S. J. Am. Chem. Soc. 2017, 139, 12736. (d) Wang, H.-Y.; Simmons, C. J.; Blaszczyk, S. A.; Balzer, P. G.; Luo, R.; Duan, X.; Tang, W. Angew. Chem. , Int. Ed. 2017, 56, 15698. (e) Wadzinski, T. J.; Steinauer, A.; Hie, L.; Pelletier, G.; Schepartz, A.; Miller, S. J. Nature Chem. 2018, 10, 644.

    8. [8]

    9. [9]

      Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.  doi: 10.1126/science.1161976

    10. [10]

      Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886.  doi: 10.1021/ja805387f

    11. [11]

      Nguyen, J. D.; D'Amato, E. M.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2012, 4, 854.  doi: 10.1038/nchem.1452

    12. [12]

      Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.  doi: 10.1002/anie.201200223

    13. [13]

    14. [14]

      Yamago, S.; Miyazoe, H.; Yoshida, J.-i. Tetrahedron Lett. 1999, 40, 2339.  doi: 10.1016/S0040-4039(99)00181-1

    15. [15]

      Nakanishi, M.; Takahashi, D.; Toshima, K. Org. Biomol. Chem. 2013, 11, 5079.  doi: 10.1039/c3ob41143e

    16. [16]

      Mao, R.-Z.; Guo, F.; Xiong, D.-C.; Li, Q.; Duan, J.; Ye, X.-S. Org. Lett. 2015, 17, 5606.  doi: 10.1021/acs.orglett.5b02823

    17. [17]

      Mao, R.-Z.; Xiong, D.-C.; Guo, F.; Li, Q.; Duan, J.; Ye, X.-S. Org. Chem. Front. 2016, 3, 737.  doi: 10.1039/C6QO00021E

    18. [18]

      Hashimoto, S.; Kurimoto, I.; Fujii, Y.; Noyori, R. J. Am. Chem. Soc. 1985, 107, 1427.  doi: 10.1021/ja00291a062

    19. [19]

      Griffin, G. W.; Bandara, N. C.; Clarke, M. A.; Tsang, W.-S.; Ga-regg, P.J.; Oscarson, S.; Silwanis, B. A. Heterocycles 1990, 30, 939.  doi: 10.3987/COM-89-S89

    20. [20]

      Furuta, T.; Takeuchi, K.; Iwamura, M. Chem. Commun. 1996, 147, 157.

    21. [21]

      Cumpstey, I.; Crich, D. J.Carbohydr. Chem.2011, 30, 469.  doi: 10.1080/07328303.2011.601533

    22. [22]

      Iwata, R.; Uda, K.; Takahashi, D.; Toshima, K. Chem. Commun. 2014, 50, 10695.  doi: 10.1039/C4CC04753B

    23. [23]

      Kimura, T.; Eto, T.; Takahashi, D.; Toshima, K. Org. Lett. 2016, 18, 3190.  doi: 10.1021/acs.orglett.6b01404

    24. [24]

      (a) Balmond, E. I.; Coe, D. M.; Galan, M. C.; McGarrigle, E. M. Angew. Chem. , Int. Ed.2012, 51, 9152.(b) Balmond, E. I.; Benito-Alifonso, D.; Coe, D. M.; Alder, R. W.; McGarrigle, E. M.; Galan, M. C.Angew. Chem., Int. Ed.2014, 53, 8190.(c) Sau, A.; Williams, R.; Palo-Nieto, C.; Franconetti, A.; Medina, S.; Galan, M. C.Angew. Chem., Int. Ed.2017, 56, 3640. (d) Palo-Nieto, C.; Sau, A.; Galan, M. C. J. Am. Chem. Soc. 2017, 139, 14041.

    25. [25]

      Zhao, G.; Wang, T. Angew. Chem., Int. Ed. 2018, 57, 6120.  doi: 10.1002/anie.201800909

    26. [26]

      Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2010, 49, 7274.  doi: 10.1002/anie.v49:40

    27. [27]

      Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2012, 51, 4140.  doi: 10.1002/anie.201200593

    28. [28]

      Spell, M.; Wang, X.; Wahba, A. E.; Conner, E.; Ragains, J. Carbohydr. Res. 2013, 369, 42.  doi: 10.1016/j.carres.2013.01.004

    29. [29]

      Wever, W. J.; Cinelli, M. A.; Bowers, A. A. Org. Lett. 2013, 15, 30.  doi: 10.1021/ol302941q

    30. [30]

      Yu, Y.; Xiong, D.-C.; Mao, R.-Z.; Ye, X.-S. J. Org. Chem. 2016, 8, 7134.
       

    31. [31]

      Zhu, Q.; Gentry, E. C.; Knowles, R. R. Angew. Chem., Int. Ed. 2016, 55, 9969.  doi: 10.1002/anie.201604619

    32. [32]

      Wen, P.; Crich, D. Org. Lett. 2017, 19, 2402.  doi: 10.1021/acs.orglett.7b00932

    33. [33]

      Ye, H.; Xiao, C.; Zhou, Q.-Q.; Wang, P. G.; Xiao, W.-J. J. Org. Chem. 2018, 83, 13325.  doi: 10.1021/acs.joc.8b02129

    34. [34]

      (a) Arceo, E.; Jurberg, I. D.; Álvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750.(b) Lima, C. G. S.; Lima, T. de M.; Duarte, M.; Jurberg, I. D.; Paixão, M. W.ACS Catal. 2016, 6, 1389.

    35. [35]

      Spell, M. L.; Deveaux, K.; Bresnahan, C. G.; Bernard, B. L.; Sheffield, W.; Kumar, R.; Ragains, J. R. Angew. Chem., Int. Ed. 2016, 55, 6515.  doi: 10.1002/anie.201601566

  • 加载中
    1. [1]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    12. [12]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    13. [13]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(54)
  • Abstract views(2450)
  • HTML views(534)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return