Citation: Li Xue-Fei, Lin Jin-Shun, Wang Jian, Li Zhong-Liang, Gu Qiang-Shuai, Liu Xin-Yuan. Cu/Chiral Phosphoric Acid-Catalyzed Asymmetric Radical-Initiated Aminoarylation of Alkenes[J]. Acta Chimica Sinica, ;2018, 76(11): 878-882. doi: 10.6023/A18100413 shu

Cu/Chiral Phosphoric Acid-Catalyzed Asymmetric Radical-Initiated Aminoarylation of Alkenes

  • Corresponding author: Gu Qiang-Shuai, guqs@sustc.edu.cn Liu Xin-Yuan, liuxy3@sustc.edu.cn
  • Received Date: 7 October 2018
    Available Online: 15 November 2018

    Fund Project: the Shenzhen Special Funds JCYJ20170307105638498the National Natural Science Foundation of China 21722203Project supported by the National Natural Science Foundation of China (Nos. 21722203, 21572096), the Shenzhen Special Funds (Nos. JCYJ20170412152435366, JCYJ20170307105638498) and the Shenzhen Nobel Prize Scientists Laboratory Project (No. C17213101)the Shenzhen Special Funds JCYJ20170412152435366the Shenzhen Nobel Prize Scientists Laboratory Project C17213101the National Natural Science Foundation of China 21572096

Figures(4)

  • Enantioenriched pyrrolidines bearing a β-aryl group and an α-quaternary carbon stereocenter are important structural motifs in many natural products and pharmaceuticals, and their enantioselective synthesis has thus received extensive attention over the last several decades. Nonetheless, so far as we know, asymmetric aminoarylation of alkenes to access such targets has only been independently reported by Wolfe and Liu using palladium catalysis involving a key aminopalladation step, and thus, general and practical methodologies towards a variety of chiral pyrrolidines are still in demand and highly desirable. As part of our ongoing interest in radical-initiated difunctionalization reactions of alkenes based on Cu(I)/chiral phosphoric acid (CPA) catalysis, we sought to develop a mechanistically distinct and complementary approach for this asymmetric palladium(Ⅱ)-catalyzed aminoarylation of alkenes. Herein we describe our efforts toward the development of the efficient asymmetric radical-initiated aminoarylation of alkenes with aryldiazonium salts enabled by Cu(I)/CPA catalysis. A general procedure for the aminoarylation of alkenes with aryldiazonium salts is as follows:under argon, an oven-dried resealable Schlenk tube equipped with a magnetic stir bar was charged with urea substrate 1 (0.1 mmol, 1.0 equiv.), CuI (1.9 mg, 0.01 mmol, 10 mol%), CPA[(S)-A1 (9.3 mg, 0.015 mmol, 15 mol%], aryldiazonium salts 2 (0.12 mmol, 1.2 equiv.), Na3PO4 (19.7 mg, 0.12 mmol, 1.2 equiv.) and isopropyl acetate(1.0 mL) at 32℃ and the sealed tube was then stirred under the same conditions. Upon completion (monitored by thin-layer chromatography), the reaction mixture was directly purified by silica gel chromatography[eluent:V(petroleum ether):V(EtOAc)=100:0 to 3:1] to afford the desired product 3. The enantiometric excess of product was determined by chiral high-performance liquid chromatography (HPLC) analysis. A broad scope of substrates worked well under this standard conditions to afford enantioenriched pyrrolidines in good yield with good to excellent enantioselectivity. A series of control experiments were conducted to determine the reaction mechanism as a radical process and a possible mechanism was proposed.
  • 加载中
    1. [1]

      (a) Royles, B. J. L. Chem. Rev. 1995, 95, 1981; (b) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435. (c) Lewis, J. R. Nat. Prod. Rep. 2001, 18, 95. (d) Fish, P. V.; Andrews, M. D.; Jonathan Fray, M.; Stobie, A.; Wakenhut, F.; Whitlock, G. A. Bioorg. Med. Chem. Lett. 2009, 19, 2829.

    2. [2]

      (a) Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem. Rev. 2000, 100, 2159. (b) Notz, W.; Tanaka, F.; Barbas, C. F. Acc. Chem. Res. 2004, 37, 580. (c) Erkkila, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416. (d) Caputo, C. A.; Jones, N. D. Dalton Trans. 2007, 4627.

    3. [3]

      (a) Pettit, G. R.; Goswami, A.; Cragg, G. M.; Schmidt, J. M.; Zou, J. C. J. Nat. Prod. 1984, 47, 913. (b) Su, B.; Cai, C.; Deng, M.; Wang, Q. J. Agric. Food. Chem. 2016, 64, 2039.

    4. [4]

      Oloff, S.; Mailman, R. B.; Tropsha, A. J. Med. Chem. 2005, 48, 7322.  doi: 10.1021/jm049116m

    5. [5]

      Burnett, D. A.; Hart, D. J. J. Org. Chem. 1987, 52, 5662.  doi: 10.1021/jo00235a004

    6. [6]

      Lebon, F.; Pegurier, C.; Ledecq, M.; Mathieu, B.; Bosman, N.; Frycia, A.; Lengele, S.; Dhurke, K.; Kanduluru, A. K.; Meunier, S.; Wagner, A.; Wolff, C.; Provins, L. Bioorg. Med. Chem. Lett. 2012, 22, 3978.  doi: 10.1016/j.bmcl.2012.04.097

    7. [7]

      For selected reviews, see: (a) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765. (b) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484. (c) Pellissier, H. Tetrahedron 2007, 63, 3235. (d) Nicolle, S. M.; Lewis, W.; Hayes, C. J.; Moody, C. J. Angew. Chem., Int. Ed. 2016, 55, 3749.

    8. [8]

    9. [9]

      For selected reviews, see: (a) Heinrich, M. R. Chem. Eur. J. 2009, 15, 820. (b) Hari, D. P.; Koenig, B. Angew. Chem., Int. Ed. 2013, 52, 4734. (c) Kindt, S.; Heinrich, M. R. Synthesis 2016, 48, 1597.

    10. [10]

      For selected examples, see: (a) Sahoo, B.; Hopkinson, M. N.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 5505. (b) Hari, D. P.; Hering, T.; Koenig, B. Angew. Chem., Int. Ed. 2014, 53, 725. (c) Kindt, S.; Wicht, K.; Heinrich, M. R. Org. Lett. 2015, 17, 6122.

    11. [11]

      (a) Mai, D. N.; Wolfe, J. P. J. Am. Chem. Soc. 2010, 132, 12157. (b) Babij, N. R.; Wolfe, J. P. Angew. Chem., Int. Ed. 2013, 52, 9247. (c) Hopkins, B. A.; Wolfe, J. P. Chem. Sci. 2014, 5, 4840. (d) White, D. R.; Hutt, J. T.; Wolfe, J. P. J. Am. Chem. Soc. 2015, 137, 11246. (e) Garlets, Z. J.; Parenti, K. R.; Wolfe, J. P. Chem.-Eur. J. 2016, 22, 5919.

    12. [12]

      Zhang, W.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 5336.  doi: 10.1002/anie.201700889

    13. [13]

      (a) Neukom, J. D.; Perch, N. S.; Wolfe, J. P. J. Am. Chem. Soc. 2010, 132, 6276. (b) Neukom, J. D.; Perch, N. S.; Wolfe, J. P. Organometallics 2011, 30, 1269.

    14. [14]

      Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 8069.  doi: 10.1021/jacs.5b04821

    15. [15]

      Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.  doi: 10.1021/jacs.6b04077

    16. [16]

      Lin, J.-S.; Wang, F.-L.; Dong, X.-Y.; He, W.-W.; Yuan, Y.; Chen, S.; Liu, X.-Y. Nat. Commun. 2017, 8, 14841.  doi: 10.1038/ncomms14841

    17. [17]

      Wang, F.-L.; Dong, X.-Y.; Lin, J.-S.; Zeng, Y.; Jiao, G.-Y.; Gu, Q.-S.; Guo, X.-Q.; Ma, C.-L.; Liu, X.-Y. Chem 2017, 3, 979.  doi: 10.1016/j.chempr.2017.10.008

    18. [18]

      (a) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547. (b) Wang, D.; Wang, F.; Chen, P.; Lin, Z.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 2054. (c) Wu, L.; Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 2904.

    19. [19]

      Cheng, Y.-F.; Dong, X.-Y.; Gu, Q.-S.; Yu, Z.-L.; Liu, X.-Y. Angew. Chem., Int. Ed. 2017, 56, 8883.  doi: 10.1002/anie.v56.30

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    3. [3]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    4. [4]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    5. [5]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    6. [6]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    12. [12]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    13. [13]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    14. [14]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(36)
  • Abstract views(1011)
  • HTML views(178)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return