Citation: Liu Jing, Gu Tianhang, Wang Wei, Liu Ai-rong, Zhang Wei-xian. Surface Chemistry and Phase Transformation of Nanoscale Zero-Valent Iron (nZVI) in Aquatic Media[J]. Acta Chimica Sinica, ;2019, 77(2): 121-129. doi: 10.6023/A18100412 shu

Surface Chemistry and Phase Transformation of Nanoscale Zero-Valent Iron (nZVI) in Aquatic Media

  • Corresponding author: Liu Ai-rong, liuairong@tongji.edu.cn
  • Received Date: 2 October 2018
    Available Online: 13 February 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 41673096, 41772243, 51578398) and National Postdoctoral Program for Innovative Talents (BX201700172)the National Natural Science Foundation of China 41673096National Postdoctoral Program for Innovative Talents BX201700172the National Natural Science Foundation of China 51578398the National Natural Science Foundation of China 41772243

Figures(9)

  • The unique "core-shell" structure endows nanoscale zero-valent iron (nZVI) rich aquatic surface chemistry properties. Transformation of surface chemistry and crystal phase of nZVI affect its reactivity and environmental transport and fate. Recent advances on the surface chemistry and phase transformation of nZVI in aqueous media are highlighted in this paper focusing on a basic theory of nZVI for pollution control and environmental application. Surface chemistry and phase of both fresh and reacted nZVI are presented. The structure, composition and properties of nanoparticles are determined not only by reaction time but also by environmental conditions. Specifically, the influences of dissolved oxygen, hydraulic conditions (static and stirring), types and concentrations of heavy metals (U(Ⅵ), Cr(Ⅵ), Se(Ⅳ)) and anions (NO3-, SO42-, HPO42- and HCO3-) are investigated. In addition, the effect of surface modification with polyelectrolytes, including anionic polyacrylamide (APAM) and carboxymethylcellulose sodium (CMC), on microstructure, morphology and composition of nanoparticles in aqueous phase was discussed. Results demonstrate that environmental conditions have significant impacts on particles structure, composition and properties, consequently on nZVI performance for pollutant removal. After corrosion under different aqueous conditions, the core-shell structured nZVI are distorted and the metallic iron core is transformed into different iron oxides/hydroxides, such as γ-Fe2O3, Fe3O4 and γ-FeOOH. These iron (hydr)oxides exhibit different surface complexation and affinity proprieties, thus eventually affecting the pollutant removal performance and the environmental fate of reaction products. More research on the effect of dynamic structure transformation by different types of pollutants, and a reaction model between the surface chemistry/phase transformation and removal performance are needed to deepen our understanding on nZVI surface chemistry, and develop more effective technologies of environmental applications.
  • 加载中
    1. [1]

      Alowitz, M. J.; Scherer, M. M. Environ. Sci. Technol. 2002, 36, 299.  doi: 10.1021/es011000h

    2. [2]

      Johnson, T. L.; Scherer, M. M.; Tratnyek, P. G. Environ. Sci. Technol. 1996, 30, 2634.  doi: 10.1021/es9600901

    3. [3]

      Matheson, L. J.; Tratnyek, P. G. Environ. Sci. Technol. 1994, 28, 2045.  doi: 10.1021/es00061a012

    4. [4]

      Bang, S.; Korfiatis, G. P.; Meng, X. J. Hazard. Mater. 2005, 121, 61.  doi: 10.1016/j.jhazmat.2005.01.030

    5. [5]

      Wang, C. B.; Zhang, W. X. Environ. Sci. Technol. 1997, 31, 2154.  doi: 10.1021/es970039c

    6. [6]

      Shu, H. Y.; Chang, M. C.; Chen, C. C.; Chen, P. E. J. Hazard. Mater. 2010, 184, 499.  doi: 10.1016/j.jhazmat.2010.08.064

    7. [7]

      Sohn, K.; Kang, S. W.; Ahn, S.; Woo, M.; Yang, S. K. Environ. Sci. Technol. 2006, 40, 5514.  doi: 10.1021/es0525758

    8. [8]

      Huang, X. Y.; Wang, W.; Ling, L.; Zhang, W. X. Acta Chim. Sinica 2017, 75, 529(in Chinese).

    9. [9]

      Gu, T.; Shi, J.; Hua, Y.; Liu, J.; Wang, W.; Zhang, W. X. Acta Chim. Sinica 2017, 75, 991(in Chinese).
       

    10. [10]

      Xia, X.; Hua, Y.; Huang, X.; Ling, L.; Zhang, W. X. Acta Chim. Sinica 2017, 75, 594(in Chinese).
       

    11. [11]

      Liu, A.; Liu, J.; Han, J.; Zhang, W. X. J. Hazard. Mater. 2017, 322, 129.  doi: 10.1016/j.jhazmat.2015.12.070

    12. [12]

      Liu, A. R.; Liu, J.; Zhang, W. X. Chemosphere 2015, 119, 1068.  doi: 10.1016/j.chemosphere.2014.09.026

    13. [13]

      Liu, A. R.; Liu, J.; Pan, B. C.; Zhang, W. X. RSC Adv. 2014, 4, 57377.  doi: 10.1039/C4RA08988J

    14. [14]

      Mu, Y.; Jia, F.; Ai, Z.; Zhang, L. Acta Chim. Sinica 2017, 75, 538 (in Chinese).
       

    15. [15]

      Wang, C. Y.; Chen, Z. Y.; Cheng, B.; Zhu, Y. R.; Liu, H. J. Mater. Sci. Eng. B 1999, 60, 223.  doi: 10.1016/S0921-5107(99)00032-X

    16. [16]

      Liu, A. R.; Zhang, W. X. Analyst 2014, 139, 4512.  doi: 10.1039/C4AN00679H

    17. [17]

      Wang, C.; Baer, D. R.; Amonette, J. E.; Engelhard, M. H.; Antony, J.; Qiang, Y. J. Am. Chem. Soc. 2009, 131, 8824.  doi: 10.1021/ja900353f

    18. [18]

      Nurmi, J. T.; Tratnyek, P. G.; Sarathy, V.; Baer, D. R.; Amonette, J. E.; Pecher, K.; Wang, C.; Linehan, J. C.; Matson, D. W.; Penn, R. L. Environ. Sci. Technol. 2005, 39, 1221.  doi: 10.1021/es049190u

    19. [19]

      Yan, W.; Herzing, A. A.; Kiely, C. J.; Zhang, W. X. J. Contam. Hydrol. 2010, 118, 96.  doi: 10.1016/j.jconhyd.2010.09.003

    20. [20]

      Liu, Y.; Majetich, S. A.; Tilton, R. D.; Sholl, D. S.; Lowry, G. V. Environ. Sci. Technol. 2005, 39, 1338.  doi: 10.1021/es049195r

    21. [21]

      Kim, H. S.; Kim, T.; Ahn, J. Y.; Hwang, K. Y.; Park, J. Y.; Lim, T. T.; Hwang, I. Chem. Eng. J. 2012, 197, 16.  doi: 10.1016/j.cej.2012.05.018

    22. [22]

      Kanel, S. R.; Greneche, J. M.; Choi, H. Environ. Sci. Technol. 2006, 40, 2045.  doi: 10.1021/es0520924

    23. [23]

      Ling, L.; Zhang, W. X. Environ. Sci. Technol. Lett. 2014, 1, 209.  doi: 10.1021/ez4002054

    24. [24]

      Yan, W. L.; Herzing, A. A.; Li, X. Q.; Kiely, C. J.; Zhang, W. X. Environ. Sci. Technol. 2010, 44, 4288.  doi: 10.1021/es100051q

    25. [25]

      Ling, L.; Zhang, W. X. RSC Adv. 2014, 4, 33861.  doi: 10.1039/C4RA04311A

    26. [26]

      Ling, L.; Huang, X. Y.; Zhang, W. X. Adv. Mater. 2018, 1705703.
       

    27. [27]

      Ling, L.; Zhang, W. X. Environ. Sci. Technol. Lett. 2014, 1, 305.  doi: 10.1021/ez5001512

    28. [28]

      Kanel, S. R.; Manning, B.; Charlet, L.; Choi, H. Environ. Sci. Technol. 2005, 39, 1291.  doi: 10.1021/es048991u

    29. [29]

      Feng, H.; Tang, L.; Tang, J.; Zeng, G.; Dong, H.; Deng, Y.; Wang, L.; Liu, Y.; Ren, X.; Zhou, Y. Environ. Sci. Nano 2018, 5, 1595.  doi: 10.1039/C8EN00348C

    30. [30]

      Tang, L.; Feng, H.; Tang, J.; Zeng, G.; Deng, Y.; Wang, J.; Liu, Y.; Zhou, Y. Water Res. 2017, 117, 175.  doi: 10.1016/j.watres.2017.03.059

    31. [31]

      Ling, L.; Pan, B. C.; Zhang, W. X. Water Res. 2015, 71, 274.  doi: 10.1016/j.watres.2015.01.002

    32. [32]

      Ling, L.; Zhang, W. X. J. Am. Chem. Soc. 2015, 137, 2788.  doi: 10.1021/ja510488r

    33. [33]

      Huang, X. Y.; Ling, L.; Zhang, W. X. J. Environ. Sci. 2018, 67, 4.  doi: 10.1016/j.jes.2018.01.029

    34. [34]

      Xia, X. F.; Ling, L.; Zhang, W. X.. Environ. Sci. Nano 2017, 4, 52.  doi: 10.1039/C6EN00231E

    35. [35]

      Xia, X. F.; Ling, L.; Zhang, W. X. Chemosphere 2017, 168, 1597.  doi: 10.1016/j.chemosphere.2016.11.150

    36. [36]

      Liu, H. B.; Chen, T. H.; Chang, D. Y.; Chen, D.; Liu, Y.; He, H. P.; Yuan, P.; Frost, R. Mater. Chem. Phys. 2012, 133, 205.  doi: 10.1016/j.matchemphys.2012.01.008

    37. [37]

      Liu, Y.; Phenrat, T.; Lowry, G. V. Environ. Sci. Technol. 2007, 41, 7881.  doi: 10.1021/es0711967

    38. [38]

      Reinsch, B. C.; Forsberg, B.; Penn, R. L.; Kim, C. S.; Lowry, G. V. Environ. Sci. Technol. 2010, 44, 3455.  doi: 10.1021/es902924h

    39. [39]

      Almeelbi, T.; Bezbaruah, A. J. Nanopart. Res. 2012, 14, 900.  doi: 10.1007/s11051-012-0900-y

    40. [40]

      Wen, Z.; Zhang, Y.; Dai, C. Colloid. Surface A 2014, 457, 433.  doi: 10.1016/j.colsurfa.2014.06.017

    41. [41]

      Hua, Y.; Wang, W.; Huang, X.; Gu, T.; Ding, D.; Ling, L.; Zhang, W. X. Chemosphere 2018, 201, 603.  doi: 10.1016/j.chemosphere.2018.03.041

    42. [42]

      Jiemvarangkul, P.; Zhang, W. X.; Lien, H. L. Chem. Eng. J. 2011, 170, 482.  doi: 10.1016/j.cej.2011.02.065

    43. [43]

      Johnson, R. L.; Nurmi, J. T.; O'Brien Johnson, G. S.; Fan, D.; O'Brien Johnson, R. L.; Shi, Z.; Salter-Blanc, A. J.; Tratnyek, P. G.; Lowry, G. V. Environ. Sci. Technol. 2013, 47, 1573.  doi: 10.1021/es304564q

    44. [44]

      Liu, J.; Liu, A. R.; Zhang, W. X. Chem. Eng. J. 2016, 303, 26832.

    45. [45]

      Tang, J.; Tang, L.; Feng, H.; Dong, H.; Zhang, Y.; Liu, S.; Zeng, G. Acta Chim. Sinica 2017, 75, 575(in Chinese).  doi: 10.7503/cjcu20160676
       

    46. [46]

      Su, Y. M.; Adeleye, A. S.; Keller, A. A.; Huang, Y. X.; Dai, C. M.; Zhou, X. F.; Zhang, Y. L. Water Res. 2015, 74, 47.  doi: 10.1016/j.watres.2015.02.004

    47. [47]

      Rajajayavel, S. R. C.; Ghoshal, S. Water Res. 2015, 78, 144.  doi: 10.1016/j.watres.2015.04.009

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    5. [5]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    9. [9]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    10. [10]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    11. [11]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    14. [14]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    15. [15]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    18. [18]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

Metrics
  • PDF Downloads(115)
  • Abstract views(5259)
  • HTML views(1336)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return