Citation: Liu Jing, Gu Tianhang, Wang Wei, Liu Ai-rong, Zhang Wei-xian. Surface Chemistry and Phase Transformation of Nanoscale Zero-Valent Iron (nZVI) in Aquatic Media[J]. Acta Chimica Sinica, ;2019, 77(2): 121-129. doi: 10.6023/A18100412 shu

Surface Chemistry and Phase Transformation of Nanoscale Zero-Valent Iron (nZVI) in Aquatic Media

  • Corresponding author: Liu Ai-rong, liuairong@tongji.edu.cn
  • Received Date: 2 October 2018
    Available Online: 13 February 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 41673096, 41772243, 51578398) and National Postdoctoral Program for Innovative Talents (BX201700172)the National Natural Science Foundation of China 41673096National Postdoctoral Program for Innovative Talents BX201700172the National Natural Science Foundation of China 51578398the National Natural Science Foundation of China 41772243

Figures(9)

  • The unique "core-shell" structure endows nanoscale zero-valent iron (nZVI) rich aquatic surface chemistry properties. Transformation of surface chemistry and crystal phase of nZVI affect its reactivity and environmental transport and fate. Recent advances on the surface chemistry and phase transformation of nZVI in aqueous media are highlighted in this paper focusing on a basic theory of nZVI for pollution control and environmental application. Surface chemistry and phase of both fresh and reacted nZVI are presented. The structure, composition and properties of nanoparticles are determined not only by reaction time but also by environmental conditions. Specifically, the influences of dissolved oxygen, hydraulic conditions (static and stirring), types and concentrations of heavy metals (U(Ⅵ), Cr(Ⅵ), Se(Ⅳ)) and anions (NO3-, SO42-, HPO42- and HCO3-) are investigated. In addition, the effect of surface modification with polyelectrolytes, including anionic polyacrylamide (APAM) and carboxymethylcellulose sodium (CMC), on microstructure, morphology and composition of nanoparticles in aqueous phase was discussed. Results demonstrate that environmental conditions have significant impacts on particles structure, composition and properties, consequently on nZVI performance for pollutant removal. After corrosion under different aqueous conditions, the core-shell structured nZVI are distorted and the metallic iron core is transformed into different iron oxides/hydroxides, such as γ-Fe2O3, Fe3O4 and γ-FeOOH. These iron (hydr)oxides exhibit different surface complexation and affinity proprieties, thus eventually affecting the pollutant removal performance and the environmental fate of reaction products. More research on the effect of dynamic structure transformation by different types of pollutants, and a reaction model between the surface chemistry/phase transformation and removal performance are needed to deepen our understanding on nZVI surface chemistry, and develop more effective technologies of environmental applications.
  • 加载中
    1. [1]

      Alowitz, M. J.; Scherer, M. M. Environ. Sci. Technol. 2002, 36, 299.  doi: 10.1021/es011000h

    2. [2]

      Johnson, T. L.; Scherer, M. M.; Tratnyek, P. G. Environ. Sci. Technol. 1996, 30, 2634.  doi: 10.1021/es9600901

    3. [3]

      Matheson, L. J.; Tratnyek, P. G. Environ. Sci. Technol. 1994, 28, 2045.  doi: 10.1021/es00061a012

    4. [4]

      Bang, S.; Korfiatis, G. P.; Meng, X. J. Hazard. Mater. 2005, 121, 61.  doi: 10.1016/j.jhazmat.2005.01.030

    5. [5]

      Wang, C. B.; Zhang, W. X. Environ. Sci. Technol. 1997, 31, 2154.  doi: 10.1021/es970039c

    6. [6]

      Shu, H. Y.; Chang, M. C.; Chen, C. C.; Chen, P. E. J. Hazard. Mater. 2010, 184, 499.  doi: 10.1016/j.jhazmat.2010.08.064

    7. [7]

      Sohn, K.; Kang, S. W.; Ahn, S.; Woo, M.; Yang, S. K. Environ. Sci. Technol. 2006, 40, 5514.  doi: 10.1021/es0525758

    8. [8]

      Huang, X. Y.; Wang, W.; Ling, L.; Zhang, W. X. Acta Chim. Sinica 2017, 75, 529(in Chinese).

    9. [9]

      Gu, T.; Shi, J.; Hua, Y.; Liu, J.; Wang, W.; Zhang, W. X. Acta Chim. Sinica 2017, 75, 991(in Chinese).
       

    10. [10]

      Xia, X.; Hua, Y.; Huang, X.; Ling, L.; Zhang, W. X. Acta Chim. Sinica 2017, 75, 594(in Chinese).
       

    11. [11]

      Liu, A.; Liu, J.; Han, J.; Zhang, W. X. J. Hazard. Mater. 2017, 322, 129.  doi: 10.1016/j.jhazmat.2015.12.070

    12. [12]

      Liu, A. R.; Liu, J.; Zhang, W. X. Chemosphere 2015, 119, 1068.  doi: 10.1016/j.chemosphere.2014.09.026

    13. [13]

      Liu, A. R.; Liu, J.; Pan, B. C.; Zhang, W. X. RSC Adv. 2014, 4, 57377.  doi: 10.1039/C4RA08988J

    14. [14]

      Mu, Y.; Jia, F.; Ai, Z.; Zhang, L. Acta Chim. Sinica 2017, 75, 538 (in Chinese).
       

    15. [15]

      Wang, C. Y.; Chen, Z. Y.; Cheng, B.; Zhu, Y. R.; Liu, H. J. Mater. Sci. Eng. B 1999, 60, 223.  doi: 10.1016/S0921-5107(99)00032-X

    16. [16]

      Liu, A. R.; Zhang, W. X. Analyst 2014, 139, 4512.  doi: 10.1039/C4AN00679H

    17. [17]

      Wang, C.; Baer, D. R.; Amonette, J. E.; Engelhard, M. H.; Antony, J.; Qiang, Y. J. Am. Chem. Soc. 2009, 131, 8824.  doi: 10.1021/ja900353f

    18. [18]

      Nurmi, J. T.; Tratnyek, P. G.; Sarathy, V.; Baer, D. R.; Amonette, J. E.; Pecher, K.; Wang, C.; Linehan, J. C.; Matson, D. W.; Penn, R. L. Environ. Sci. Technol. 2005, 39, 1221.  doi: 10.1021/es049190u

    19. [19]

      Yan, W.; Herzing, A. A.; Kiely, C. J.; Zhang, W. X. J. Contam. Hydrol. 2010, 118, 96.  doi: 10.1016/j.jconhyd.2010.09.003

    20. [20]

      Liu, Y.; Majetich, S. A.; Tilton, R. D.; Sholl, D. S.; Lowry, G. V. Environ. Sci. Technol. 2005, 39, 1338.  doi: 10.1021/es049195r

    21. [21]

      Kim, H. S.; Kim, T.; Ahn, J. Y.; Hwang, K. Y.; Park, J. Y.; Lim, T. T.; Hwang, I. Chem. Eng. J. 2012, 197, 16.  doi: 10.1016/j.cej.2012.05.018

    22. [22]

      Kanel, S. R.; Greneche, J. M.; Choi, H. Environ. Sci. Technol. 2006, 40, 2045.  doi: 10.1021/es0520924

    23. [23]

      Ling, L.; Zhang, W. X. Environ. Sci. Technol. Lett. 2014, 1, 209.  doi: 10.1021/ez4002054

    24. [24]

      Yan, W. L.; Herzing, A. A.; Li, X. Q.; Kiely, C. J.; Zhang, W. X. Environ. Sci. Technol. 2010, 44, 4288.  doi: 10.1021/es100051q

    25. [25]

      Ling, L.; Zhang, W. X. RSC Adv. 2014, 4, 33861.  doi: 10.1039/C4RA04311A

    26. [26]

      Ling, L.; Huang, X. Y.; Zhang, W. X. Adv. Mater. 2018, 1705703.
       

    27. [27]

      Ling, L.; Zhang, W. X. Environ. Sci. Technol. Lett. 2014, 1, 305.  doi: 10.1021/ez5001512

    28. [28]

      Kanel, S. R.; Manning, B.; Charlet, L.; Choi, H. Environ. Sci. Technol. 2005, 39, 1291.  doi: 10.1021/es048991u

    29. [29]

      Feng, H.; Tang, L.; Tang, J.; Zeng, G.; Dong, H.; Deng, Y.; Wang, L.; Liu, Y.; Ren, X.; Zhou, Y. Environ. Sci. Nano 2018, 5, 1595.  doi: 10.1039/C8EN00348C

    30. [30]

      Tang, L.; Feng, H.; Tang, J.; Zeng, G.; Deng, Y.; Wang, J.; Liu, Y.; Zhou, Y. Water Res. 2017, 117, 175.  doi: 10.1016/j.watres.2017.03.059

    31. [31]

      Ling, L.; Pan, B. C.; Zhang, W. X. Water Res. 2015, 71, 274.  doi: 10.1016/j.watres.2015.01.002

    32. [32]

      Ling, L.; Zhang, W. X. J. Am. Chem. Soc. 2015, 137, 2788.  doi: 10.1021/ja510488r

    33. [33]

      Huang, X. Y.; Ling, L.; Zhang, W. X. J. Environ. Sci. 2018, 67, 4.  doi: 10.1016/j.jes.2018.01.029

    34. [34]

      Xia, X. F.; Ling, L.; Zhang, W. X.. Environ. Sci. Nano 2017, 4, 52.  doi: 10.1039/C6EN00231E

    35. [35]

      Xia, X. F.; Ling, L.; Zhang, W. X. Chemosphere 2017, 168, 1597.  doi: 10.1016/j.chemosphere.2016.11.150

    36. [36]

      Liu, H. B.; Chen, T. H.; Chang, D. Y.; Chen, D.; Liu, Y.; He, H. P.; Yuan, P.; Frost, R. Mater. Chem. Phys. 2012, 133, 205.  doi: 10.1016/j.matchemphys.2012.01.008

    37. [37]

      Liu, Y.; Phenrat, T.; Lowry, G. V. Environ. Sci. Technol. 2007, 41, 7881.  doi: 10.1021/es0711967

    38. [38]

      Reinsch, B. C.; Forsberg, B.; Penn, R. L.; Kim, C. S.; Lowry, G. V. Environ. Sci. Technol. 2010, 44, 3455.  doi: 10.1021/es902924h

    39. [39]

      Almeelbi, T.; Bezbaruah, A. J. Nanopart. Res. 2012, 14, 900.  doi: 10.1007/s11051-012-0900-y

    40. [40]

      Wen, Z.; Zhang, Y.; Dai, C. Colloid. Surface A 2014, 457, 433.  doi: 10.1016/j.colsurfa.2014.06.017

    41. [41]

      Hua, Y.; Wang, W.; Huang, X.; Gu, T.; Ding, D.; Ling, L.; Zhang, W. X. Chemosphere 2018, 201, 603.  doi: 10.1016/j.chemosphere.2018.03.041

    42. [42]

      Jiemvarangkul, P.; Zhang, W. X.; Lien, H. L. Chem. Eng. J. 2011, 170, 482.  doi: 10.1016/j.cej.2011.02.065

    43. [43]

      Johnson, R. L.; Nurmi, J. T.; O'Brien Johnson, G. S.; Fan, D.; O'Brien Johnson, R. L.; Shi, Z.; Salter-Blanc, A. J.; Tratnyek, P. G.; Lowry, G. V. Environ. Sci. Technol. 2013, 47, 1573.  doi: 10.1021/es304564q

    44. [44]

      Liu, J.; Liu, A. R.; Zhang, W. X. Chem. Eng. J. 2016, 303, 26832.

    45. [45]

      Tang, J.; Tang, L.; Feng, H.; Dong, H.; Zhang, Y.; Liu, S.; Zeng, G. Acta Chim. Sinica 2017, 75, 575(in Chinese).  doi: 10.7503/cjcu20160676
       

    46. [46]

      Su, Y. M.; Adeleye, A. S.; Keller, A. A.; Huang, Y. X.; Dai, C. M.; Zhou, X. F.; Zhang, Y. L. Water Res. 2015, 74, 47.  doi: 10.1016/j.watres.2015.02.004

    47. [47]

      Rajajayavel, S. R. C.; Ghoshal, S. Water Res. 2015, 78, 144.  doi: 10.1016/j.watres.2015.04.009

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    14. [14]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(101)
  • Abstract views(4481)
  • HTML views(1125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return