Citation: Tang Siqun, Ma Lingling, Luo Min, Zhang Zhaohui, Qiu Ye, Feng Shuo, Xia Chuanqin, Jin Yongdong, Xu Diandou. Heterogeneous Reaction of NH3 and Cl2 on the Surface of γ-Al2O3 Particles[J]. Acta Chimica Sinica, ;2019, 77(2): 160-165. doi: 10.6023/A18090401 shu

Heterogeneous Reaction of NH3 and Cl2 on the Surface of γ-Al2O3 Particles

  • Corresponding author: Ma Lingling, malingling@ihep.ac.cn Xu Diandou, xudd@ihep.ac.cn
  • Received Date: 25 September 2018
    Available Online: 3 February 2018

    Fund Project: the National Natural Science Foundation of China 11575210the National Natural Science Foundation of China U1832212the Key Deployment Projects of Chinese Academy of Sciences ZDRW-CN-2018-1the National Natural Science Foundation of China 91643206Project supported by the National Natural Science Foundation of China (Nos. U1832212, 11405184, 11575210, 91643206) and the Key Deployment Projects of Chinese Academy of Sciences (No. ZDRW-CN-2018-1)the National Natural Science Foundation of China 11405184

Figures(5)

  • The effect of NH3 concentration, reaction time and other conditions on the heterogeneous reaction of NH3 and Cl2 on the surface of γ-Al2O3 particles was investigated at the room temperature, pressure and in the presence of oxygen by ion chromatography (IC). The formation of the surface species (Cl-, NO3-, and SO42-) via both individual reaction and co-existing reaction of NH3, Cl2, SO2 and NO2 on the surface of γ-Al2O3 was investigated as well. The results revealed that NH3 (400 ppm) and Cl2 (400 ppm) had synergistic effect on the surface γ-Al2O3, and the total yield of Cl- was 589.65 μg after reaction of 2 h. The formation of the surface chlorides increased firstly and then decreased with the increase of ammonia concentration, and the maximum yield of Cl- was reached at 400 ppm of NH3. In the presence of active chlorine, NH3 significantly promoted the generation of the adsorptive species on the surface, such as Cl-, NO3- and SO42-, and the most obvious synergistic effect was induced to form on the conditions of four gases co-existence. The heterogeneous reaction mechanism of NH3 with Cl2 and the influence on the atmospheric environment were also discussed as well. Additionally, the mixing ratios used in the study are extremely high compared with ambient levels, which could be as a simulation to explore whether the synergistic effect obtained in this paper are also present in the real ambient conditions. We have studied a relatively low mixing ratios for heterogeneous reaction experiments, but the content of nitrate and chloride on the surface of γ-Al2O3 were lower than the limit of detection of ion chromatography. Therefore, other researches such as Knudsen cell and smog chamber study, field monitoring, and mode study are also worth for exploring in future study. The results of this study could provide reference data for the study of the contribution of active chlorine and ammonia to the formation of secondary inorganic particles.
  • 加载中
    1. [1]

      Kang, W.-B.; Xia, Y.; Wang, J.; Wang, W. Acta Chim. Sinica 2016, 74, 694.
       

    2. [2]

      Zhu, T.; Sang, J.; Zhao, D.-F. Sci. Sinica Chim. 2010, 40, 1731.

    3. [3]

      Hu, M.; Shang, D.-J.; Guo, S.; Wu, Z.-J. Acta Chim. Sinica 2016, 74, 385.  doi: 10.3969/j.issn.0253-2409.2016.04.001
       

    4. [4]

      Zhang, R.; Wang, G.; Guo, S.; Zamora, M.-L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Chem. Rev. 2015, 115, 3803.  doi: 10.1021/acs.chemrev.5b00067

    5. [5]

      Behera, S. N.; Sharma, M. Atmos. Environ. 2011, 45, 4015.  doi: 10.1016/j.atmosenv.2011.04.056

    6. [6]

      Yu, X.-C.; He, K.-B.; Ma, Y.-L.; Duan, F.-K.; Yang, F.-R. China Environ. Sci. 2004, 24, 53.  doi: 10.3321/j.issn:1000-6923.2004.01.013

    7. [7]

      Xu, W.-B.; Xu, Y.-L.; Tang, X.-L.; Lei, Y.; Wang, J.-N. China Environ. Sci. 2016, 36, 3531.  doi: 10.3969/j.issn.1000-6923.2016.12.002

    8. [8]

      Zhao, D.-F.; Song, X.-J.; Zhu, T.; Zhang, Z.-F.; Liu, Y.-J.; Shang, J. Atmos. Chem. Phys. 2018, 18, 2481.  doi: 10.5194/acp-18-2481-2018

    9. [9]

      Wu, L.-Y.; Tong, S.-R.; Wang, W.-G.; Ge, M.-F. Atmos. Chem. Phys. 2011, 11, 6593.  doi: 10.5194/acp-11-6593-2011

    10. [10]

      Clegg, S. M.; Abbatt, J. P. D. Atmos. Chem. Phys. 2001, 1, 73.  doi: 10.5194/acp-1-73-2001

    11. [11]

      Huang, L. B.; Zhao, Y.; Li, H.; Chen, Z. M. Environ. Sci. Technol. 2015, 49, 10797.  doi: 10.1021/acs.est.5b03930

    12. [12]

      Xie, S. D.; Yu, T.; Zhang, Y. H.; Zeng, L. M.; Qi, L.; Tang, X. Y. Sci. Total Environ. 2005, 345, 153.  doi: 10.1016/j.scitotenv.2004.10.013

    13. [13]

      Bedjanian, Y.; Poulet, G. Chem. Rev. 2003, 103, 4639.  doi: 10.1021/cr0205210

    14. [14]

      Ge, M.-F.; Ma, C.-P. Prog. Chem. 2009, 21, 307.
       

    15. [15]

      Agarwal, H.; Stenger, H. G.; Wu, S.; Fan, Z. Energ. Fuel 2006, 20, 1068.  doi: 10.1021/ef050388p

    16. [16]

      Ariya, P. A.; Khalizov, A.; Gidas, A. J. Phy. Chem. A 2002, 106, 7310.  doi: 10.1021/jp020719o

    17. [17]

      Faxon, C.; Bean, J.; Ruiz, L. Atmosphere 2015, 6, 1487.  doi: 10.3390/atmos6101487

    18. [18]

      Liao, J.; Huey, L. G.; Liu, Z.; Tanner, D. J.; Cantrell, C. A.; Orlando, J. J.; Flocke, F. M.; Shepson, P. B.; Weinheimer, A. J.; Hall, S. R.; Ullmann, K.; Beine, H. J.; Wang, Y. H.; Ingall, E. D.; Stephens, C. R.; Hornbrook, R. S.; Apel, E. C.; Riemer, D.; Fried, A.; Mauldin, R. L.; Smith, J. N.; Staebler, R. M.; Neuman, J. A.; Nowak, J. B. Nat. Geosci. 2014, 7, 91.  doi: 10.1038/ngeo2046

    19. [19]

      Liu, X. X; Qu, H.; Huey, G.; Wang, Y. H.; Sjostedt, S.; Zeng, L.; Lu, K. D.; Wu, Y. S.; Hu, M.; Zhu, T.; Zhang, Y. H. Environ. Sci. Technol. 2017, 51, 9588.  doi: 10.1021/acs.est.7b03039

    20. [20]

      Tang, S. Q.; Ma, L. L.; Luo, M.; Zhang, Z. H.; Cao, X. Z.; Huang, Z. L.; Xia, R.; Qiu, Y.; Feng, S.; Zhang, P.; Xia, C. Q.; Jin, Y. D.; Xu, D. D. Atmos. Environ. 2018, 188, 25.  doi: 10.1016/j.atmosenv.2018.06.005

    21. [21]

      Gard, E. E.; Kleeman, M. J.; Gross, D. S.; Hughes, L. S.; Allen, J. O.; Morrical, B. D.; Fergenson, D. P.; Dienes, T.; Galli, M. E.; Johnson, R. J.; Cass, G. R.; Prather, K. A. Science 1998, 279, 1184.  doi: 10.1126/science.279.5354.1184

    22. [22]

      Chen, H. H.; Navea, J. G.; Young, M. A.; Grassian, V. H. J. Phys. Chem. A 2011, 115, 490.  doi: 10.1021/jp110164j

    23. [23]

      He, H.; Wang, Y. S.; Ma, Q. X.; Ma, J. Z.; Chu, B. W.; Ji, D. S.; Tang, G. Q.; Liu, C.; Zhang, H. X.; Hao, J. M. Sci. Rep. 2014, 4, 4172.
       

    24. [24]

      Xue, W.-B.; Fu, F.; Wang, J.-N.; Tang, G.-Q.; Lei, Y.; Yang, J.-T.; Wang, Y.-S. China Environ. Sci. 2014, 34, 1361.
       

    25. [25]

      Wang, L.-H.; Zeng, F.-G.; Xiang, W.-L.; Wang, Z.-F.; Yang, W.-Y. China Environ. Sci. 2015, 35, 2546.  doi: 10.3969/j.issn.1000-6923.2015.08.037

    26. [26]

      Liu, J.; An, X. Q.; Zhu, T.; Zhai, S.-X.; Li, N. China Environ. Sci. 2014, 34, 2726.
       

    27. [27]

      Zhang, L.; Chen, Y. F.; Zhao, Y. H.; Henze, D. K.; Zhu, L. Y.; Song, Y.; Paulot, F.; Liu, X. J.; Pan, Y. P.; Lin, Y.; Huang, B. X. Atmos. Chem. Phys. 2018, 18, 339.  doi: 10.5194/acp-18-339-2018

    28. [28]

      Liu, L.; Zhang, X. Y.; Xu, W.; Liu, X. J.; Li, Y.; Lu, X. H.; Zhang, Y. H.; Zhang, W. T. Atmos. Chem. Phys. 2017, 17, 9365.  doi: 10.5194/acp-17-9365-2017

    29. [29]

      Pepi, F.; Ricci, A.; Rosi, M. J. Phys. Chem. 2003, 107, 2085.
       

    30. [30]

      Veirs, D. K.; Berg, J. M.; Worl, L. A.; Narlesky, J. E; Dunn, K. A.; Louthan, J. M. R. J. Nucl. Mat. Manag. 2010, 38, 25.
       

    31. [31]

      Réti, F.; Josepovits, V.; Perczel, I. Appl. Surf. Sci. 1993, 65, 271.
       

    32. [32]

      Sisler, H. H.; Neth, F. T.; Drago, R. S.; Yaney, D. J. Am. Chem. Soc. 1954, 76, 3906.  doi: 10.1021/ja01644a010

    33. [33]

      Oldfield, J. W.; Todd, B. Brit. Corros. J. 1991, 26, 173.  doi: 10.1179/000705991798269233

    34. [34]

      Goodman, A. L.; Miller, T. M.; Grassian, V. H. J. V. Sci. Technol. A 1998, 16, 2585.
       

    35. [35]

      Miller, T. M.; Grassian, V. H. Geophy. Res. Lett. 1998, 25, 3835.  doi: 10.1029/1998GL900011

    36. [36]

      Mitchell, M. B.; Sheinker, V. N. J. Phys. Chem. 1996, 100, 7550.  doi: 10.1021/jp9519225

    37. [37]

      Waqif, M.; Saad, A. M.; Bensitel, M.; Bachelier, J.; Saur, O.; Lavalley, J. C. J. Chem. Soc. Faraday. Trans. 1992, 88, 2931.  doi: 10.1039/ft9928802931

    38. [38]

      Ma, Q.; Liu, Y.; He, H. J. Phy. Chem. A 2008, 112, 6630.  doi: 10.1021/jp802025z

    39. [39]

      Rossi, M. J. Chem. Rev. 2003, 103, 4823.  doi: 10.1021/cr020507n

    40. [40]

      Schweitzer, F.; Mirabel, P.; George, C. J. Phys. Chem. A 1998, 102, 3942.  doi: 10.1021/jp980748s

    41. [41]

      Keene, W. C.; Sander, R.; Pszenny, A. A. P.; Vogt, R.; Crutzen, P. J.; Galloway, J. N. J. Aerosol Sci. 1998, 29, 339.  doi: 10.1016/S0021-8502(97)10011-8

    42. [42]

      Huang, Z. L.; Zhang, Z. H.; Kong, W. H.; Feng, S.; Qiu, Y.; Tang, S. Q.; Xia, C. Q.; Ma, L. L.; Luo, M.; Xu, D. D. Atmos. Environ. 2017, 166, 403.  doi: 10.1016/j.atmosenv.2017.06.041

  • 加载中
    1. [1]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    4. [4]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    15. [15]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    19. [19]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(9)
  • Abstract views(1967)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return