Citation: Liu Yucan, Su Miaomiao, Zhang Yan, Duan Jinming, Li Wei. Influence Rule of Organic Solvents Methanol from Sample Preparation on Degradation Rate and Mechanism of Atrazine in UV-based Oxidation Processes[J]. Acta Chimica Sinica, ;2019, 77(1): 72-83. doi: 10.6023/A18090365 shu

Influence Rule of Organic Solvents Methanol from Sample Preparation on Degradation Rate and Mechanism of Atrazine in UV-based Oxidation Processes

  • Corresponding author: Liu Yucan, liuyucanfendou@163.com
  • Received Date: 4 September 2018
    Available Online: 25 January 2018

    Fund Project: Project supported by the Natural Science Foundation of Shandong Province (No. ZR2017BEE016), the National Natural Science Foundation of China (No. 51308437) and the Science Fund of Yantai University (No. TM17B19)the National Natural Science Foundation of China 51308437the Science Fund of Yantai University TM17B19the Natural Science Foundation of Shandong Province ZR2017BEE016

Figures(13)

  • Stock solutions of organic micro-pollutants with low water solubility are commonly prepared using organic solvents in laboratory studies on degradation of these organic compounds. Dilution of the stock solution unavoidably introduces a small amount of organic solvent into the experimental working solutions. This could possibly affect the estimation of the degradation rate constants (kobs) of these organic micro-pollutants by UV-based oxidation processes. To demonstrate this problem, the effect of organic solvents on the degradation rate of atrazine (ATZ) has been investigated in the sole-UV, UV/H2O2 and UV/TiO2 process at the concentration levels that would likely be derived from stock solutions. Organic solvent methanol (MeOH) commonly used for stock-solution preparation was selected. The degradation of ATZ was investigated under ultraviolet irradiation (253.7 nm). The reaction was conducted in an annular photochemical reactor, in the axis of which a low-pressure mercury lamp (LPUV) was installed. The photon flux into the solution from the LPUV was determined to be at 1.18×10-7 Einstein/s. A magnetic stirrer was located at the bottom of the reactor to maintain homogeneity of the reacting solution. A thermostatic water recirculation system was used to control the solution temperature at 20±0.5℃. Prior to irradiation, the mercury lamp was ignited for 30 min for a stable output. UV photo-oxidation was performed with ultrapure water containing an initial 0.1 or 5 mg/L ATZ and different volume ratio of methanol. Solution pH value of 4.0, 7.0 and 10.0 was buffered using phosphate or borate. Determination of ATZ using ultra-performance liquid chromatography-electrospray-triple quadrupole mass spectrometry coupled with an ACQUITYTM UPLC BEH C8 separation column. The results show that the reaction rate of ATZ in UV/TiO2 process could be affected significantly by the presence of MeOH, even at a concentration well below that possibly introduced during the preparation of working solutions from the organic solvent stock solutions (e.g. 0.01%, V/V). With the increase of MeOH concentration, the kobs of ATZ in UV/TiO2 process gradually decreases. The organic solvents having a stronger reaction activity with·OH tend to impose a greater effect on the kobs of ATZ. However, MeOH does not affect kobs of photolysis of ATZ in sole-UV process, and a small effect for the kobs of ATZ in UV/H2O2 process. In addition, MeOH in the reaction system does not affect the speciation and degradation pathway of ATZ under different UV-based oxidation processes. The findings here provide a plausible explanation for the discrepancies in the reaction rate constants reported in the literature for some organic micro-pollutants during the UV-based oxidation processes.
  • 加载中
    1. [1]

      Gibson, D. T. Aquatic Pollutants: Transformation and Biological Effects, Elsevier, 2015.
       

    2. [2]

       

    3. [3]

      Kong, L.; Kadokami, K.; Duong, H. T.; Chau, H. T. C. Chemosphere 2016, 165, 221.  doi: 10.1016/j.chemosphere.2016.08.084

    4. [4]

      Zietzschmann, F.; Altmann, J.; Ruhl, A. S.; Dünnbier, U.; Dommisch, I.; Sperlich, A.; Meinel, F.; Jekel, M. Water Res. 2014, 56, 48.  doi: 10.1016/j.watres.2014.02.044

    5. [5]

      Reddy, P. V. L.; Kim, K.-H. J. Hazard. Mater. 2015, 285, 325.  doi: 10.1016/j.jhazmat.2014.11.036

    6. [6]

      Rozas, O.; Vidal, C.; Baeza, C.; Jardim, W. F.; Rossner, A.; Mansilla, H. D. Water Res. 2016, 98, 109.  doi: 10.1016/j.watres.2016.03.069

    7. [7]

      Sanches, S.; Crespo, M. T. B.; Pereira, V. J. Water Res. 2010, 44, 1809.  doi: 10.1016/j.watres.2009.12.001

    8. [8]

      Choi, H. J.; Kim, D.; Lee, T. J. J. Environ. Sci. Health B 2013, 48, 927.  doi: 10.1080/03601234.2013.816587

    9. [9]

      Rastogi, A.; Al-Abed, S. R.; Dionysiou, D. D. Appl. Catal. B 2009, 85, 171.  doi: 10.1016/j.apcatb.2008.07.010

    10. [10]

      Wang, D.-H.; Zhang, L.; Lou, S.-Z. Acta Chim. Sinica 2017, 75, 22.
       

    11. [11]

      Ruan, L.-H.; Chen, C.-X.; Zhang, X.-X.; Sun, J. Chin. J. Org. Chem. 2018, 38, DOI:10.6023/cjoc201806009 (in Chinese).  doi: 10.6023/cjoc201806009

    12. [12]

      Challis, J. K.; Cuscito, L. D.; Joudan, S.; Luong, K. H.; Knapp, C. W.; Hanson, M. L.; Wong, C. S. Sci. Total Environ. 2018, 635, 803.  doi: 10.1016/j.scitotenv.2018.04.128

    13. [13]

      Yang, Y.; Cao, H.; Peng, P.; Bo, H. J. Hazard. Mater. 2014, 279, 444.  doi: 10.1016/j.jhazmat.2014.07.035

    14. [14]

      Barchanska1, H.; Sajdak, M.; Kornelia, S.; Swientek1, A.; Tworek1, M.; Kurek, M. Environ. Sci. Pollut. Res. 2017, 24, 644.  doi: 10.1007/s11356-016-7798-3

    15. [15]

      Singh, S.; Kumar, V.; Chauhan, A.; Datta, S.; Wani, A. B.; Singh, N.; Singh, J. Environ. Chem. Lett. 2018, 16, 211.  doi: 10.1007/s10311-017-0665-8

    16. [16]

      United States Environmental Protection Agency, National Primary Drinking Water Regulations (Total Coliforms (Including Fecal Coliforms and E. Coli)), 2009, p. 54.

    17. [17]

      Directive 2000/60/EC, Directive W F. EU Water Framework Directive, 2000.

    18. [18]

      State Standard of the People's Republic of China, Standards for Drinking Water Quality GB 5749-2006, 2006.

    19. [19]

      Moreira, A. J.; Borges, A. C.; Gouvea, L. F. C.; Macleod, T. C. O.; Freschi, G. P. G. J. Photoch. Photobio. A 2017, 347, 160.  doi: 10.1016/j.jphotochem.2017.07.022

    20. [20]

      Chen, C.; Yang, S.; Guo, Y.; Sun, C.; Gu, C.; Xu, B. J. Hazard. Mater. 2009, 172, 675.  doi: 10.1016/j.jhazmat.2009.07.050

    21. [21]

      Lekkerkerker-Teunissen, K.; Benotti, M. J.; Snyder, S. A.; Dijk, H. C. V. Sep. Purif. Technol. 2012, 96, 33.  doi: 10.1016/j.seppur.2012.04.018

    22. [22]

      Fang, T.; Hofmanna, R.; Bolton, J. J. Photoch. Photobio. A 2018, 357, 81.  doi: 10.1016/j.jphotochem.2018.02.025

    23. [23]

      Abramović, B. F.; Banić, N. D.; Šojić, D. V. Chemosphere 2010, 81, 114.  doi: 10.1016/j.chemosphere.2010.07.016

    24. [24]

      Vione, D.; Falletti, G.; Maurino, V.; Minero, C.; Pelizzetti, E.; Malandrino, M., Ajassa, R.; Olariu, R.-I.; Arsene, C. Environ. Sci. Technol. 2006, 40, 3775.  doi: 10.1021/es052206b

    25. [25]

      Zhou, H.; Lian, L.; Yan, S.; Song, W. Water Res. 2017, 112, 120.  doi: 10.1016/j.watres.2017.01.048

    26. [26]

      Khan, J. A.; He, X.; Shah, N. S.; Khan, H. M.; Hapeshi, E.; Fatta-Kassinos, D.; Dionysiou, D. D. Chem. Eng. J. 2014, 252, 393.  doi: 10.1016/j.cej.2014.04.104

    27. [27]

      Yola, M. L.; Eren, T.; Atar, N. Chem. Eng. J. 2014, 250, 288.  doi: 10.1016/j.cej.2014.03.116

    28. [28]

      Naeem, K.; Ouyang, F. J. Environ. Sci.-China 2013, 25, 399.  doi: 10.1016/S1001-0742(12)60055-2

    29. [29]

      Li, W.; Wu, R.; Duan, J.; Saint, C. P.; Mulcahy, D. Chem. Eng. J. 2016, 313, 801.
       

    30. [30]

      Khan, J. A.; He, X.; Khan, H. M.; Shah, N. S.; Dionysiou, D. D. Chem. Eng. J. 2013, 218, 376.  doi: 10.1016/j.cej.2012.12.055

    31. [31]

      United States Environmental Protection Agency, Determination of Triazine Pesticides and Their Degradates in Drinking Water by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC/ESI-MS/MS), Method 536, 2007.

    32. [32]

      Khan, J. A.; He, X.; Shah, N. S.; Sayed, M.; Khan, H. M.; Dionysiou, D. D. Chem. Eng. J. 2017, 325, 485.  doi: 10.1016/j.cej.2017.05.011

    33. [33]

      Meng, C.; Wang, H.; Wu, Y.-B.; Fu, X.-Z.; Yuan, R.-S. Acta Chim. Sinica 2017, 75, 508 (in Chinese).
       

    34. [34]

      Du, P.-J.; Su, T.-M.; Luo, X.; Zhou, X.-T.; Qin, Z.-Z.; Ji, H.-B.; Chen, J.-H. Chinese J. Chem. 2018, 36, 538.  doi: 10.1002/cjoc.v36.6

    35. [35]

      Zhang, X.-W.; Li, P.-F.; Yuan, Y.; Jia, X.-D. Chin. J. Org. Chem. 2014, 38, 2435 (in Chinese).

    36. [36]

      Cui, S.-Z.; Yang, H.-P.; Sun, H.-H.; Nie, K.; Wu, J.-M. Acta Chim. Sinica 2016, 74, 995 (in Chinese).
       

    37. [37]

      Hu, E.; Cheng, H. Water Res. 2014, 57, 8.  doi: 10.1016/j.watres.2014.03.015

    38. [38]

      Liu, Y.-C.; Duan, J.-M.; Li, W. Acta Chim. Sinica 2015, 73, 1196 (in Chinese).
       

    39. [39]

      Li, X.; Ma, J.; Liu, G.; Fang, J.; Yue, S.; Guan, Y.; Chen, L.; Liu, X. Environ. Sci. Technol. 2012, 46, 7342.  doi: 10.1021/es3008535

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

Metrics
  • PDF Downloads(10)
  • Abstract views(1293)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return