Citation: Wang Ze, Wong Y. -L. Elaine, Ren Juan, Chen Xiangfeng, Chan T. -W. Dominic. Recent Progress on Electron Capture Dissociation Mass Spectrometry[J]. Acta Chimica Sinica, ;2019, 77(2): 130-142. doi: 10.6023/A18090363 shu

Recent Progress on Electron Capture Dissociation Mass Spectrometry

  • Corresponding author: Chen Xiangfeng, xiangfchensdas@163.com Chan T. -W. Dominic, twdchan@cuhk.edu.hk
  • Received Date: 2 September 2018
    Available Online: 24 February 2018

    Fund Project: the Natural Science Foundation of Shandong Province ZR2017MB011the Research Grant Council of the Hong Kong Special Administrative Region 4053152the Research Grant Council of the Hong Kong Special Administrative Region 3132667Project supported by the National Natural Science Foundation of China (No. 21205071), the Research Grant Council of the Hong Kong Special Administrative Region (Nos. 3132667 & 4053152) and the Natural Science Foundation of Shandong Province (No. ZR2017MB011)the National Natural Science Foundation of China 21205071

Figures(20)

  • In the past twenty years, our knowledge on gas phase radical ion chemistry has been significantly improved due to the development of electron capture dissociation. Combined with soft ionization method, it has shown the technique can provide novel fragment ions for the structural elucidation of biomolecules, especially for protein characterization. This review aims to introduce fundamental aspects of electron capture dissociation mass spectrometry, as well as its applications in the analysis of biomolecules.
  • 加载中
    1. [1]

      Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. J. Am. Chem. Soc. 1998, 120, 3265.  doi: 10.1021/ja973478k

    2. [2]

      Lin, Z.; Guo, F.; Gregorich, Z. R.; Sun, R.; Zhang, H.; Hu, Y.; Shanmuganayagam, D.; Ge, Y. J. Am. Soc. Mass Spectrom. 2018, 29, 1284.  doi: 10.1007/s13361-018-1925-y

    3. [3]

      Floris, F.; Chiron, L.; Lynch, A. M.; Barrow, M. P.; Delsuc, M.-A.; O'Connor, P. B. Anal. Chem. 2018, 90, 7302.  doi: 10.1021/acs.analchem.8b00500

    4. [4]

      Wongkongkathep, P.; Han, J. Y.; Choi, T. S.; Yin, S.; Kim, H. I.; Loo, J. A. J. Am. Soc. Mass Spectrom. 2018, 29, 1870.  doi: 10.1007/s13361-018-2002-2

    5. [5]

      Shaw, J. B.; Malhan, N.; Vasil'ev, Y. V.; Lopez, N. I.; Makarov, A. A.; Beckman, J. S.; Voinov, V. G. Anal. Chem. 2018, 90, 10819.  doi: 10.1021/acs.analchem.8b01901

    6. [6]

      McLafferty, F. W.; Tureček, F. Interpretation of Mass Spectra, University Science Books, Mill Valley, 1993.

    7. [7]

      Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64.  doi: 10.1126/science.2675315

    8. [8]

      Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Rapid Commun. Mass Spectrom. 1988, 2, 151.  doi: 10.1002/(ISSN)1097-0231

    9. [9]

      Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299.  doi: 10.1021/ac00171a028

    10. [10]

      Song, F.; Yan, C.; Liu, N.; Liu, Z.; Liu, S. Acta Chim. Sinica 2009, 67, 1103.
       

    11. [11]

      Li, H.; Zheng, B.; Ye, Y.; Yuan, G. Acta Chim. Sinica 2009, 67, 1869.  doi: 10.3321/j.issn:0567-7351.2009.16.009
       

    12. [12]

      Zubarev, R. A. Mass Spectrom. Rev. 2003, 22, 57.  doi: 10.1002/(ISSN)1098-2787

    13. [13]

      Chen, X.; Wang, Z.; Wong, Y. L. E.; Wu, R.; Zhang, F.; Chan, T. W. D. Mass Spectrom. Rev. 2018, 37, 793.  doi: 10.1002/mas.v37.6

    14. [14]

      Peng, Y.; Ayaz-Guner, S.; Yu, D.; Ge, Y. Proteomics Clin. Appl. 2014, 8, 554.  doi: 10.1002/prca.v8.7-8

    15. [15]

      Lermyte, F.; Valkenborg, D.; Loo, J. A.; Sobott, F. Mass Spectrom. Rev. 2018, 37, 750.  doi: 10.1002/mas.21560

    16. [16]

      Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Proc. Natl. Acad. Sci., U. S. A. 2004, 101, 9528.  doi: 10.1073/pnas.0402700101

    17. [17]

      Mentinova, M.; Crizer, D. M.; Baba, T.; McGee, W. M.; Glish, G. L.; McLuckey, S. A. J. Am. Soc. Mass Spectrom. 2013, 24, 1676.  doi: 10.1007/s13361-013-0606-0

    18. [18]

      Gunawardena, H. P.; He, M.; Chrisman, P. A.; Pitteri, S. J.; Hogan, J. M.; Hodges, B. D. M.; McLuckey, S. A. J. Am. Chem. Soc. 2005, 127, 12627.  doi: 10.1021/ja0526057

    19. [19]

      Pitteri, S. J.; McLuckey, S. A. Mass Spectrom. Rev. 2005, 24, 931.  doi: 10.1002/(ISSN)1098-2787

    20. [20]

      Coon, J. J.; Ueberheide, B.; Syka, J. E. P.; Dryhurst, D. D.; Ausio, J.; Shabanowitz, J.; Hunt, D. F. Proc. Natl. Acad. Sci., U. S. A. 2005, 102, 9463.  doi: 10.1073/pnas.0503189102

    21. [21]

      Pitteri, S. J.; Chrisman, P. A.; Hogan, J. M.; McLuckey, S. A. Anal. Chem. 2005, 77, 1831.  doi: 10.1021/ac0483872

    22. [22]

      Sun, R.; Dong, M.-Q.; Chi, H.; Yang, B.; Xiu, L.-Y.; Wang, L.-H.; Fu, Y.; He, S.-M. Progress in Biochemistry and Biophysics 2010, 37, 94.
       

    23. [23]

      Jia, W.; Ying, W.-T.; Qian, X.-H. J. Chin. Mass Spectrom. Soc. 2007, 28, 55.  doi: 10.3969/j.issn.1004-2997.2007.01.012

    24. [24]

      Riley, N. M.; Coon, J. J. Anal. Chem. 2018, 90, 40.  doi: 10.1021/acs.analchem.7b04810

    25. [25]

      Nie, A.; Lu, H.; Yang, P.; He, F. Chin. J. Chem. 2011, 29, 171.  doi: 10.1002/cjoc.v29.1

    26. [26]

      Nagornov, K. O.; Gorshkov, M. V.; Kozhinov, A. N.; Tsybin, Y. O. Anal. Chem. 2014, 86, 9020.  doi: 10.1021/ac501579h

    27. [27]

      Nicolardi, S.; Deelder, A. M.; Palmblad, M.; van der Burgt, Y. E. M. Anal. Chem. 2014, 86, 5376.  doi: 10.1021/ac500383c

    28. [28]

      Scigelova, M.; Hornshaw, M.; Giannakopulos, A.; Makarov, A. Mol. Cell. Proteomics 2011, 10, M111.009431.  doi: 10.1074/mcp.M111.009431

    29. [29]

      Luo, D.; Xin, P.-Y.; Yan, J.-J.; Fang, S.; Sun, X.-H.; Yan, J.; Chu, J.-F.; Yan, C.-Y. J. Chin. Mass Spectrom. Soc. 2013, 34, 263.  doi: 10.7538/zpxb.2013.34.05.0263

    30. [30]

      Zhang, J.; Chai, Y.; Wang, W.; Shang, W.; Pan, Y. Chin. J. Chem. 2012, 30, 2383.  doi: 10.1002/cjoc.201200610

    31. [31]

      Li, B.; An, H. J.; Hedrick, J. L.; Lebrilla, C. B. In Glycomics: Methods and Protocols, Humana Press, Totowa, New Jersey, 2009, p. 133.

    32. [32]

      McDonald, L. A.; Barbieri, L. R.; Carter, G. T.; Kruppa, G.; Feng, X.; Lotvin, J. A.; Siegel, M. M. Anal. Chem. 2003, 75, 2730.  doi: 10.1021/ac0264731

    33. [33]

      Li, B.; An, H. J.; Hedrick, J. L.; Lebrilla, C. B. In Glycomics: Methods and Protocols, Humana Press, Totowa, New Jersey, 2009, p. 23.

    34. [34]

      Li, H.; Wolff, J. J.; Van Orden, S. L.; Loo, J. A. Anal. Chem. 2014, 86, 317.  doi: 10.1021/ac4033214

    35. [35]

      Ohta, D.; Kanaya, S.; Suzuki, H. Curr. Opin. Biotech. 2010, 21, 35.  doi: 10.1016/j.copbio.2010.01.012

    36. [36]

      Cooper, H. J.; H kansson, K.; Marshall, A. G. Mass Spectrom. Rev. 2004, 24, 201.
       

    37. [37]

      Baba, T.; Hashimoto, Y.; Hasegawa, H.; Hirabayashi, A.; Waki, I. Anal. Chem. 2004, 76, 4263.  doi: 10.1021/ac049309h

    38. [38]

      Satake, H.; Hasegawa, H.; Hirabayashi, A.; Hashimoto, Y.; Baba, T.; Masuda, K. Anal. Chem. 2007, 79, 8755.  doi: 10.1021/ac071462z

    39. [39]

      Zubarev, R. A.; Nielsen, M. L.; Budnik, B. A. Eur. J. Mass Spectrom. 2000, 6, 235.  doi: 10.1255/ejms.351

    40. [40]

      Chan, T. W. D.; Ip, W. H. H. J. Am. Soc. Mass Spectrom. 2002, 13, 1396.  doi: 10.1016/S1044-0305(02)00703-1

    41. [41]

      Tsybin, Y. O.; H kansson, P.; Budnik, B. A.; Haselmann, K. F.; Kjeldsen, F.; Gorshkov, M.; Zubarev, R. A. Rapid Commun. Mass Spectrom. 2001, 15, 1849.  doi: 10.1002/rcm.v15:19

    42. [42]

      Haselmann, K. F.; Budnik, B. A.; Olsen, J. V.; Nielsen, M. L.; Reis, C. A.; Clausen, H.; Johnsen, A. H.; Zubarev, R. A. Anal. Chem. 2001, 73, 2998.  doi: 10.1021/ac0015523

    43. [43]

      Tsybin, Y. O.; Witt, M.; Baykut, G.; Kjeldsen, F.; H kansson, P. Rapid Commun. Mass Spectrom. 2003, 17, 1759.  doi: 10.1002/rcm.1118

    44. [44]

      Shaw, J. B.; Robinson, E. W.; Paša-Tolić, L. Anal. Chem. 2016, 88, 3019.  doi: 10.1021/acs.analchem.6b00148

    45. [45]

      Horn, D. M.; Ge, Y.; McLafferty, F. W. Anal. Chem. 2000, 72, 4778.  doi: 10.1021/ac000494i

    46. [46]

      Erba, E. B. Proteomics 2014, 14, 1259.  doi: 10.1002/pmic.201300333

    47. [47]

      Lanucara, F.; Eyers, C. E. Mass Spectrom. Rev. 2012, 32, 27.

    48. [48]

      Hao, Q.; Song, T.; Ng, D. C. M.; Quan, Q.; Siu, C.-K.; Chu, I. K. J. Phys. Chem. B 2012, 116, 7627.  doi: 10.1021/jp301882p

    49. [49]

      Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Anal. Chem. 2000, 72, 563.  doi: 10.1021/ac990811p

    50. [50]

      Roepstorff, P.; Fohlman, J. Biomed. Mass Spectrom. 1984, 11, 601.  doi: 10.1002/(ISSN)1096-9888

    51. [51]

      Biemann, K. Biomed. Environ. Mass Spectrom. 1988, 16, 99.  doi: 10.1002/(ISSN)1096-9888

    52. [52]

      Paizs, B.; Suhai, S. Mass Spectrom. Rev. 2004, 24, 508.

    53. [53]

      Laskin, J.; Yang, Z.; Song, T.; Lam, C.; Chu, I. K. J. Am. Chem. Soc. 2010, 132, 16006.  doi: 10.1021/ja104438z

    54. [54]

      Yu, L.; Tan, Y.; Tsai, Y.; Goodlett, D. R.; Polfer, N. C. J. Proteome Res. 2011, 10, 2409.  doi: 10.1021/pr101235w

    55. [55]

      Harrison, A. G.; Young, A. B.; Bleiholder, C.; Suhai, S.; Paizs, B. J. Am. Chem. Soc. 2006, 128, 10364.  doi: 10.1021/ja062440h

    56. [56]

      Bleiholder, C.; Osburn, S.; Williams, T. D.; Suhai, S.; Van Stipdonk, M.; Harrison, A. G.; Paizs, B. J. Am. Chem. Soc. 2008, 130, 17774.  doi: 10.1021/ja805074d

    57. [57]

      Tureček, F.; Reid, P. J. Int. J. Mass Spectrom. 2003, 222, 49.  doi: 10.1016/S1387-3806(02)00983-1

    58. [58]

      Tureček, F.; Julian, R. R. Chem. Rev. 2013, 113, 6691.  doi: 10.1021/cr400043s

    59. [59]

      Zubarev, R. A.; Haselmann, K. F.; Budnik, B.; Kjeldsen, F.; Jensen, F. Eur. J. Mass Spectrom. 2002, 8, 337.  doi: 10.1255/ejms.517

    60. [60]

      Tureček, F.; Chen, X.; Hao, C. J. Am. Chem. Soc. 2008, 130, 8818.  doi: 10.1021/ja8019005

    61. [61]

      Chen, X.; Tureček, F. J. Am. Chem. Soc. 2006, 128, 12520.  doi: 10.1021/ja063676o

    62. [62]

      Tureček, F.; Yao, C.; Fung, Y. M. E.; Hayakawa, S.; Hashimoto, M.; Matsubara, H. J. Phys. Chem. B 2009, 113, 7347.  doi: 10.1021/jp900719n

    63. [63]

      Tureček, F.; Chung, T. W.; Moss, C. L.; Wyer, J. A.; Ehlerding, A.; Holm, A. I. S.; Zettergren, H.; Nielsen, S. B.; Hvelplund, P.; Chamot-Rooke, J.; Bythell, B.; Paizs, B. J. Am. Chem. Soc. 2010, 132, 10728.  doi: 10.1021/ja907808h

    64. [64]

      Tureček, F.; Jones, J. W.; Towle, T.; Panja, S.; Nielsen, S. B.; Hvelplund, P.; Paizs, B. J. Am. Chem. Soc. 2008, 130, 14584.  doi: 10.1021/ja8036367

    65. [65]

      Syrstad, E. A.; Tureček, F. J. Am. Soc. Mass Spectrom. 2005, 16, 208.  doi: 10.1016/j.jasms.2004.11.001

    66. [66]

      Panja, S.; Nielsen, S. B.; Hvelplund, P.; Tureček, F. J. Am. Soc. Mass Spectrom. 2008, 19, 1726.  doi: 10.1016/j.jasms.2008.08.001

    67. [67]

      Tureček, F.; Panja, S.; Wyer, J. A.; Ehlerding, A.; Zettergren, H.; Nielsen, S. B.; Hvelplund, P.; Bythell, B.; Paizs, B. J. Am. Chem. Soc. 2009, 131, 16472.  doi: 10.1021/ja9050229

    68. [68]

      Sawicka, A.; Skurski, P.; Hudgins, R. R.; Simons, J. J. Phys. Chem. B 2003, 107, 13505.  doi: 10.1021/jp035675d

    69. [69]

      Sobczyk, M.; Anusiewicz, I.; Berdys-Kochanska, J.; Sawicka, A.; Skurski, P.; Simons, J. J. Phys. Chem. A 2005, 109, 250.  doi: 10.1021/jp0463114

    70. [70]

      Sobczyk, M.; Simons, J. J. Phys. Chem. B 2006, 110, 7519.  doi: 10.1021/jp0604701

    71. [71]

      Leymarie, N.; Costello, C. E.; O'Connor, P. B. J. Am. Chem. Soc. 2003, 125, 8949.  doi: 10.1021/ja028831n

    72. [72]

      Chung, T. W.; Hui, R.; Ledvina, A.; Coon, J. J.; Tureček, F. J. Am. Soc. Mass Spectrom. 2012, 23, 1336.  doi: 10.1007/s13361-012-0408-9

    73. [73]

      Ledvina, A. R.; Chung, T. W.; Hui, R.; Coon, J. J.; Tureček, F. J. Am. Soc. Mass Spectrom. 2012, 23, 1351.  doi: 10.1007/s13361-012-0409-8

    74. [74]

      Qi, Y.; Bortoli, S.; Volmer, D. A. J. Am. Soc. Mass Spectrom. 2014, 25, 1253.  doi: 10.1007/s13361-014-0893-0

    75. [75]

      Wongkongkathep, P.; Li, H.; Zhang, X.; Loo, R. R. O.; Julian, R. R.; Loo, J. A. Int. J. Mass Spectrom. 2015, 390, 137.  doi: 10.1016/j.ijms.2015.07.008

    76. [76]

      Uggerud, E. Int. J. Mass Spectrom. 2004, 234, 45.  doi: 10.1016/j.ijms.2004.01.020

    77. [77]

      Li, H.; O'Connor, P. B. J. Am. Soc. Mass Spectrom. 2012, 23, 2001.  doi: 10.1007/s13361-012-0473-0

    78. [78]

      Cole, S. R.; Ma, X.; Zhang, X.; Xia, Y. J. Am. Soc. Mass Spectrom. 2012, 23, 310.  doi: 10.1007/s13361-011-0300-z

    79. [79]

      Mentinova, M.; Han, H.; McLuckey, S. A. Rapid Commun. Mass Spectrom. 2009, 23, 2647.  doi: 10.1002/rcm.v23:17

    80. [80]

      O'Connor, P. B.; Lin, C.; Cournoyer, J. J.; Pittman, J. L.; Belyayev, M.; Budnik, B. A. J. Am. Soc. Mass Spectrom. 2006, 17, 576.  doi: 10.1016/j.jasms.2005.12.015

    81. [81]

      Holm, A. I. S.; Hvelplund, P.; Kadhane, U.; Larsen, M. K.; Liu, B.; Nielsen, S. B.; Panja, S.; Pedersen, J. M.; Skrydstrup, T.; Støchkel, K.; Williams, E. R.; Worm, E. S. J. Phys. Chem. A 2007, 111, 9641.  doi: 10.1021/jp075943y

    82. [82]

      Iavarone, A. T.; Paech, K.; Williams, E. R. Anal. Chem. 2004, 76, 2231.  doi: 10.1021/ac035431p

    83. [83]

      Savitski, M. M.; Kjeldsen, F.; Nielsen, M. L.; Zubarev, R. A. Angew. Chem., Int. Ed. 2006, 45, 5301.  doi: 10.1002/(ISSN)1521-3773

    84. [84]

      Adams, C. M.; Kjeldsen, F.; Zubarev, R. A.; Budnik, B. A.; Haselmann, K. F. J. Am. Soc. Mass Spectrom. 2004, 15, 1087.  doi: 10.1016/j.jasms.2004.04.026

    85. [85]

      Adams, C. M.; Zubarev, R. A. Anal. Chem. 2005, 77, 4571.  doi: 10.1021/ac0503963

    86. [86]

      Polfer, N. C.; Haselmann, K. F.; Langridge-Smith, P. R. R.; Barran, P. E. Mol. Phys. 2005, 103, 1481.  doi: 10.1080/00268970500095998

    87. [87]

      Hamidane, H. B.; He, H.; Tsybin, O. Y.; Emmett, M. R.; Hendrickson, C. L.; Marshall, A. G.; Tsybin, Y. O. J. Am. Soc. Mass Spectrom. 2009, 20, 1182.  doi: 10.1016/j.jasms.2009.02.015

    88. [88]

      Lin, C.; Cournoyer, J. J.; O'Connor, P. B. J. Am. Soc. Mass Spectrom. 2006, 17, 1605.  doi: 10.1016/j.jasms.2006.07.007

    89. [89]

      Lin, C.; Cournoyer, J. J.; O'Connor, P. B. J. Am. Soc. Mass Spectrom. 2008, 19, 780.  doi: 10.1016/j.jasms.2008.01.001

    90. [90]

      Tureček, F.; Syrstad, E. A.; Seymour, J. L.; Chen, X.; Yao, C. J. Mass Spectrom. 2003, 38, 1093.  doi: 10.1002/(ISSN)1096-9888

    91. [91]

      Qi, Y.; Volmer, D. A. Analyst 2016, 141, 794.  doi: 10.1039/C5AN02171E

    92. [92]

      Kjeldsen, F.; Haselmann, K. F.; Budnik, B. A.; Jensen, F.; Zubarev, R. A. Chem. Phys. Lett. 2002, 356, 201.  doi: 10.1016/S0009-2614(02)00149-5

    93. [93]

      Kjeldsen, F.; Haselmann, K. F.; Sørensen, E. S.; Zubarev, R. A. Anal. Chem. 2003, 75, 1267.  doi: 10.1021/ac020422m

    94. [94]

      Yu, X.; Zhong, W. Anal. Chem. 2016, 88, 5914.  doi: 10.1021/acs.analchem.6b00823

    95. [95]

      Cody, R. B.; Freiser, B. S. Anal. Chem. 1979, 51, 547.  doi: 10.1021/ac50040a022

    96. [96]

      Fung, Y. M. E.; Adams, C. M.; Zubarev, R. A. J. Am. Chem. Soc. 2009, 131, 9977.  doi: 10.1021/ja8087407

    97. [97]

      Wolff, J. J.; Laremore, T. N.; Aslam, H.; Linhardt, R. J.; Amster, I. J. J. Am. Soc. Mass Spectrom. 2008, 19, 1449.  doi: 10.1016/j.jasms.2008.06.024

    98. [98]

      Lioe, H.; O'Hair, R. A. J. Anal. Bioanal. Chem. 2007, 389, 1429.  doi: 10.1007/s00216-007-1535-1

    99. [99]

      Yoo, H. J.; Wang, N.; Zhuang, S.; Song, H.; H kansson, K. J. Am. Chem. Soc. 2011, 133, 16790.  doi: 10.1021/ja207736y

    100. [100]

      Hersberger, K. E.; H kansson, K. Anal. Chem. 2012, 84, 6370.  doi: 10.1021/ac301536r

    101. [101]

      Budnik, B. A.; Haselmann, K. F.; Zubarev, R. A. Chem. Phys. Lett. 2001, 342, 299.  doi: 10.1016/S0009-2614(01)00501-2

    102. [102]

      Larraillet, V.; Vorobyev, A.; Brunet, C.; Lemoine, J.; Tsybin, Y. O.; Antoine, R.; Dugourd, P. J. Am. Soc. Mass Spectrom. 2010, 21, 670.  doi: 10.1016/j.jasms.2010.01.015

    103. [103]

      Kjeldsen, F.; Silivra, O. A.; Ivonin, I. A.; Haselmann, K. F.; Gorshkov, M.; Zubarev, R. A. Chem.-Eur. J. 2005, 11, 1803.  doi: 10.1002/(ISSN)1521-3765

    104. [104]

      Zhang, H.; Cui, W.; Wen, J.; Blankenship, R. E.; Gross, M. L. Anal. Chem. 2011, 83, 5598.  doi: 10.1021/ac200695d

    105. [105]

      Savitski, M. M.; Kjeldsen, F.; Nielsen, M. L.; Zubarev, R. A. J. Am. Soc. Mass Spectrom. 2007, 18, 113.  doi: 10.1016/j.jasms.2006.09.008

    106. [106]

      Ledvina, A. R.; Beauchene, N. A.; McAlister, G. C.; Syka, J. E. P.; Schwartz, J. C.; Griep-Raming, J.; Westphall, M. S.; Coon, J. J. Anal. Chem. 2010, 82, 10068.  doi: 10.1021/ac1020358

    107. [107]

      Swaney, D. L.; McAlister, G. C.; Wirtala, M.; Schwartz, J. C.; Syka, J. E. P.; Coon, J. J. Anal. Chem. 2007, 79, 477.  doi: 10.1021/ac061457f

    108. [108]

      Zhurov, K. O.; Fornelli, L.; Wodrich, M. D.; Laskay, . A.; Tsybin, Y. O. Chem. Soc. Rev. 2013, 42, 5014.  doi: 10.1039/c3cs35477f

    109. [109]

      Hubler, S. L.; Jue, A.; Keith, J.; McAlister, G. C.; Craciun, G.; Coon, J. J. J. Am. Chem. Soc. 2008, 130, 6388.  doi: 10.1021/ja7099985

    110. [110]

      Tsur, D.; Tanner, S.; Zandi, E.; Bafna, V.; Pevzner, P. A. Nat. Biotechnol. 2005, 23, 1562.  doi: 10.1038/nbt1168

    111. [111]

      Fu, Y.; Yang, Q.; Sun, R.; Li, D.; Zeng, R.; Ling, C. X.; Gao, W. Bioinformatics 2004, 20, 1948.  doi: 10.1093/bioinformatics/bth186

    112. [112]

      Li, D.; Fu, Y.; Sun, R.; Ling, C. X.; Wei, Y.; Zhou, H.; Zeng, R.; Yang, Q.; He, S.; Gao, W. Bioinformatics 2005, 21, 3049.  doi: 10.1093/bioinformatics/bti439

    113. [113]

      Wang, L.-H.; Li, D.-Q.; Fu, Y.; Wang, H.-P.; Zhang, J.-F.; Yuan, Z.-F.; Sun, R.-X.; Zeng, R.; He, S.-M.; Gao, W. Rapid Commun. Mass Spectrom. 2007, 21, 2985.  doi: 10.1002/(ISSN)1097-0231

    114. [114]

      Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. J. Am. Soc. Mass Spectrom. 2000, 11, 320.  doi: 10.1016/S1044-0305(99)00157-9

    115. [115]

      Jaitly, N.; Mayampurath, A.; Littlefield, K.; Adkins, J. N.; Anderson, G. A.; Smith, R. D. BMC Bioinformatics 2009, 10, 87.  doi: 10.1186/1471-2105-10-87

    116. [116]

      Guner, H.; Close, P. L.; Cai, W.; Zhang, H.; Peng, Y.; Gregorich, Z. R.; Ge, Y. J. Am. Soc. Mass Spectrom. 2014, 25, 464.  doi: 10.1007/s13361-013-0789-4

    117. [117]

      Bourgoin-Voillard, S.; Leymarie, N.; Costello, C. E. Proteomics 2014, 14, 1174.  doi: 10.1002/pmic.201300433

    118. [118]

      Li, H.; Wongkongkathep, P.; Van Orden, S. L.; Loo, R. R. O.; Loo, J. A. J. Am. Soc. Mass Spectrom. 2014, 25, 2060.  doi: 10.1007/s13361-014-0928-6

    119. [119]

      Wang, Z.; Chen, X.; Deng, L.; Li, W.; Wong, Y. L. E.; Chan, T. W. D. Eur. J. Mass Spectrom. 2015, 21, 707.  doi: 10.1255/ejms.1386

    120. [120]

      Fung, Y. M. E.; Duan, L.; Chan, T. W. D. Eur. J. Mass Spectrom. 2004, 10, 449.  doi: 10.1255/ejms.648

    121. [121]

      Chan, W. Y. K.; Chan, T. W. D. J. Am. Soc. Mass Spectrom. 2010, 21, 1235.  doi: 10.1016/j.jasms.2010.03.034

    122. [122]

      Wong, P. S. J.; Chen, X.; Deng, L.; Wang, Z.; Li, W.; Wong, Y. L. E.; Chan, T. W. D. Rapid Commun. Mass Spectrom. 2015, 29, 1757.  doi: 10.1002/rcm.7275

    123. [123]

      Fung, Y. M. E.; Chan, T. W. D. J. Am. Soc. Mass Spectrom. 2005, 16, 1523.  doi: 10.1016/j.jasms.2005.05.001

    124. [124]

      Fung, Y. M. E.; Liu, H.; Chan, T. W. D. J. Am. Soc. Mass Spectrom. 2006, 17, 757.  doi: 10.1016/j.jasms.2006.01.014

    125. [125]

      Chen, X.; Chan, W. Y. K.; Wong, P. S.; Yeung, H. S.; Chan, T. W. D. J. Am. Soc. Mass Spectrom. 2011, 22, 233.  doi: 10.1007/s13361-010-0035-2

    126. [126]

      Wong, Y. L. E.; Chen, X.; Wu, R.; Hung, Y. L. W.; Yeung, H. S.; Chan, T. W. D. Anal. Chem. 2017, 89, 7773.  doi: 10.1021/acs.analchem.7b01808

    127. [127]

      Chen, X.; Fung, Y. M. E.; Chan, W. Y. K.; Wong, P. S.; Yeung, H. S.; Chan, T. W. D. J. Am. Soc. Mass Spectrom. 2011, 22, 2232.  doi: 10.1007/s13361-011-0246-1

    128. [128]

      Chen, X.; Wang, Z.; Li, W.; Wong, Y. L. E.; Chan, T. W. D. Eur. J. Mass Spectrom. 2015, 21, 649.  doi: 10.1255/ejms.1382

    129. [129]

      Chen, X.; Liu, G.; Elaine Wong, Y. L.; Deng, L.; Wang, Z.; Li, W.; Chan, T. W. D. Rapid Commun. Mass Spectrom. 2016, 30, 705.  doi: 10.1002/rcm.7502

    130. [130]

      Fung, Y. M. E.; Kjeldsen, F.; Silivra, O. A.; Chan, T. W. D.; Zubarev, R. A. Angew. Chem., Int. Ed. 2005, 44, 6399.  doi: 10.1002/(ISSN)1521-3773

    131. [131]

      Chan, T. W. D.; Choy, M. F.; Chan, W. Y. K.; Fung, Y. M. E. J. Am. Soc. Mass Spectrom. 2009, 20, 213.  doi: 10.1016/j.jasms.2008.08.018

    132. [132]

      Stobiecki, M. Phytochemistry 2000, 54, 237.  doi: 10.1016/S0031-9422(00)00091-1

    133. [133]

      Qu, F.; Li, Y.-X.; Zhang, Y.-C.; Zang, J. Chin. J. Org. Chem. 2003, 23, 249.
       

    134. [134]

      Ni onuevo, M. R.; Lebrilla, C. B. Nutr. Rev. 2009, 67, S216.  doi: 10.1111/nure.2009.67.issue-s2

    135. [135]

      Wang, Y.-J.; Huang, C.-C.; Gao, F.; Zhang, J.-W.; Li, Y.; Bu, D.-B.; Sun, S.-W. Prog. Biochem. Biophys. 2017, 44, 830.
       

    136. [136]

      Wong, Y. L. E.; Chen, X.; Li, W.; Wang, Z.; Hung, Y. L. W.; Wu, R.; Chan, T. W. D. Anal. Chem. 2016, 88, 5590.  doi: 10.1021/acs.analchem.6b00908

    137. [137]

      Wong, Y. L. E.; Chen, X.; Wu, R.; Hung, Y. L. W.; Chan, T. W. D. Anal. Chem. 2017, 89, 10111.  doi: 10.1021/acs.analchem.7b03128

    138. [138]

      Fischle, W.; Tseng, B. S.; Dormann, H. L.; Ueberheide, B. M.; Garcia, B. A.; Shabanowitz, J.; Hunt, D. F.; Funabiki, H.; Allis, C. D. Nature 2005, 438, 1116.  doi: 10.1038/nature04219

    139. [139]

      Ge, Y.; Lawhorn, B. G.; ElNaggar, M.; Strauss, E.; Park, J.-H.; Begley, T. P.; McLafferty, F. W. J. Am. Chem. Soc. 2002, 124, 672.  doi: 10.1021/ja011335z

    140. [140]

      Pesavento, J. J.; Mizzen, C. A.; Kelleher, N. L. Anal. Chem. 2006, 78, 4271.  doi: 10.1021/ac0600050

    141. [141]

      Reid, G. E.; Stephenson, J. L.; McLuckey, S. A. Anal. Chem. 2002, 74, 577.  doi: 10.1021/ac015618l

  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    6. [6]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    7. [7]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    10. [10]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    11. [11]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    12. [12]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    13. [13]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    14. [14]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    15. [15]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    16. [16]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    17. [17]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

    18. [18]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    19. [19]

      Tian Li Liping Zhang Ling Liu Ruifang Li Longfei Mao Hui Yang . Reform and Practice of Analytical Chemistry Teaching under the Guidance of Course Ideology and Politics. University Chemistry, 2024, 39(6): 189-194. doi: 10.3866/PKU.DXHX202310014

    20. [20]

      Fan Yu Aihua Li Yun Liu Tianrong Zhu Liang Wang Junhui Xu Yazhen Wang . Exploration and Practice in Developing a Premier Course in Inorganic and Analytical Chemistry. University Chemistry, 2024, 39(8): 36-43. doi: 10.3866/PKU.DXHX202312037

Metrics
  • PDF Downloads(35)
  • Abstract views(3700)
  • HTML views(708)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return