Citation: Wang Ze, Wong Y. -L. Elaine, Ren Juan, Chen Xiangfeng, Chan T. -W. Dominic. Recent Progress on Electron Capture Dissociation Mass Spectrometry[J]. Acta Chimica Sinica, ;2019, 77(2): 130-142. doi: 10.6023/A18090363 shu

Recent Progress on Electron Capture Dissociation Mass Spectrometry

  • Corresponding author: Chen Xiangfeng, xiangfchensdas@163.com Chan T. -W. Dominic, twdchan@cuhk.edu.hk
  • Received Date: 2 September 2018
    Available Online: 24 February 2018

    Fund Project: the Natural Science Foundation of Shandong Province ZR2017MB011the Research Grant Council of the Hong Kong Special Administrative Region 4053152the Research Grant Council of the Hong Kong Special Administrative Region 3132667Project supported by the National Natural Science Foundation of China (No. 21205071), the Research Grant Council of the Hong Kong Special Administrative Region (Nos. 3132667 & 4053152) and the Natural Science Foundation of Shandong Province (No. ZR2017MB011)the National Natural Science Foundation of China 21205071

Figures(20)

  • In the past twenty years, our knowledge on gas phase radical ion chemistry has been significantly improved due to the development of electron capture dissociation. Combined with soft ionization method, it has shown the technique can provide novel fragment ions for the structural elucidation of biomolecules, especially for protein characterization. This review aims to introduce fundamental aspects of electron capture dissociation mass spectrometry, as well as its applications in the analysis of biomolecules.
  • 加载中
    1. [1]

      Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. J. Am. Chem. Soc. 1998, 120, 3265.  doi: 10.1021/ja973478k

    2. [2]

      Lin, Z.; Guo, F.; Gregorich, Z. R.; Sun, R.; Zhang, H.; Hu, Y.; Shanmuganayagam, D.; Ge, Y. J. Am. Soc. Mass Spectrom. 2018, 29, 1284.  doi: 10.1007/s13361-018-1925-y

    3. [3]

      Floris, F.; Chiron, L.; Lynch, A. M.; Barrow, M. P.; Delsuc, M.-A.; O'Connor, P. B. Anal. Chem. 2018, 90, 7302.  doi: 10.1021/acs.analchem.8b00500

    4. [4]

      Wongkongkathep, P.; Han, J. Y.; Choi, T. S.; Yin, S.; Kim, H. I.; Loo, J. A. J. Am. Soc. Mass Spectrom. 2018, 29, 1870.  doi: 10.1007/s13361-018-2002-2

    5. [5]

      Shaw, J. B.; Malhan, N.; Vasil'ev, Y. V.; Lopez, N. I.; Makarov, A. A.; Beckman, J. S.; Voinov, V. G. Anal. Chem. 2018, 90, 10819.  doi: 10.1021/acs.analchem.8b01901

    6. [6]

      McLafferty, F. W.; Tureček, F. Interpretation of Mass Spectra, University Science Books, Mill Valley, 1993.

    7. [7]

      Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64.  doi: 10.1126/science.2675315

    8. [8]

      Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Rapid Commun. Mass Spectrom. 1988, 2, 151.  doi: 10.1002/(ISSN)1097-0231

    9. [9]

      Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299.  doi: 10.1021/ac00171a028

    10. [10]

      Song, F.; Yan, C.; Liu, N.; Liu, Z.; Liu, S. Acta Chim. Sinica 2009, 67, 1103.
       

    11. [11]

      Li, H.; Zheng, B.; Ye, Y.; Yuan, G. Acta Chim. Sinica 2009, 67, 1869.  doi: 10.3321/j.issn:0567-7351.2009.16.009
       

    12. [12]

      Zubarev, R. A. Mass Spectrom. Rev. 2003, 22, 57.  doi: 10.1002/(ISSN)1098-2787

    13. [13]

      Chen, X.; Wang, Z.; Wong, Y. L. E.; Wu, R.; Zhang, F.; Chan, T. W. D. Mass Spectrom. Rev. 2018, 37, 793.  doi: 10.1002/mas.v37.6

    14. [14]

      Peng, Y.; Ayaz-Guner, S.; Yu, D.; Ge, Y. Proteomics Clin. Appl. 2014, 8, 554.  doi: 10.1002/prca.v8.7-8

    15. [15]

      Lermyte, F.; Valkenborg, D.; Loo, J. A.; Sobott, F. Mass Spectrom. Rev. 2018, 37, 750.  doi: 10.1002/mas.21560

    16. [16]

      Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Proc. Natl. Acad. Sci., U. S. A. 2004, 101, 9528.  doi: 10.1073/pnas.0402700101

    17. [17]

      Mentinova, M.; Crizer, D. M.; Baba, T.; McGee, W. M.; Glish, G. L.; McLuckey, S. A. J. Am. Soc. Mass Spectrom. 2013, 24, 1676.  doi: 10.1007/s13361-013-0606-0

    18. [18]

      Gunawardena, H. P.; He, M.; Chrisman, P. A.; Pitteri, S. J.; Hogan, J. M.; Hodges, B. D. M.; McLuckey, S. A. J. Am. Chem. Soc. 2005, 127, 12627.  doi: 10.1021/ja0526057

    19. [19]

      Pitteri, S. J.; McLuckey, S. A. Mass Spectrom. Rev. 2005, 24, 931.  doi: 10.1002/(ISSN)1098-2787

    20. [20]

      Coon, J. J.; Ueberheide, B.; Syka, J. E. P.; Dryhurst, D. D.; Ausio, J.; Shabanowitz, J.; Hunt, D. F. Proc. Natl. Acad. Sci., U. S. A. 2005, 102, 9463.  doi: 10.1073/pnas.0503189102

    21. [21]

      Pitteri, S. J.; Chrisman, P. A.; Hogan, J. M.; McLuckey, S. A. Anal. Chem. 2005, 77, 1831.  doi: 10.1021/ac0483872

    22. [22]

      Sun, R.; Dong, M.-Q.; Chi, H.; Yang, B.; Xiu, L.-Y.; Wang, L.-H.; Fu, Y.; He, S.-M. Progress in Biochemistry and Biophysics 2010, 37, 94.
       

    23. [23]

      Jia, W.; Ying, W.-T.; Qian, X.-H. J. Chin. Mass Spectrom. Soc. 2007, 28, 55.  doi: 10.3969/j.issn.1004-2997.2007.01.012

    24. [24]

      Riley, N. M.; Coon, J. J. Anal. Chem. 2018, 90, 40.  doi: 10.1021/acs.analchem.7b04810

    25. [25]

      Nie, A.; Lu, H.; Yang, P.; He, F. Chin. J. Chem. 2011, 29, 171.  doi: 10.1002/cjoc.v29.1

    26. [26]

      Nagornov, K. O.; Gorshkov, M. V.; Kozhinov, A. N.; Tsybin, Y. O. Anal. Chem. 2014, 86, 9020.  doi: 10.1021/ac501579h

    27. [27]

      Nicolardi, S.; Deelder, A. M.; Palmblad, M.; van der Burgt, Y. E. M. Anal. Chem. 2014, 86, 5376.  doi: 10.1021/ac500383c

    28. [28]

      Scigelova, M.; Hornshaw, M.; Giannakopulos, A.; Makarov, A. Mol. Cell. Proteomics 2011, 10, M111.009431.  doi: 10.1074/mcp.M111.009431

    29. [29]

      Luo, D.; Xin, P.-Y.; Yan, J.-J.; Fang, S.; Sun, X.-H.; Yan, J.; Chu, J.-F.; Yan, C.-Y. J. Chin. Mass Spectrom. Soc. 2013, 34, 263.  doi: 10.7538/zpxb.2013.34.05.0263

    30. [30]

      Zhang, J.; Chai, Y.; Wang, W.; Shang, W.; Pan, Y. Chin. J. Chem. 2012, 30, 2383.  doi: 10.1002/cjoc.201200610

    31. [31]

      Li, B.; An, H. J.; Hedrick, J. L.; Lebrilla, C. B. In Glycomics: Methods and Protocols, Humana Press, Totowa, New Jersey, 2009, p. 133.

    32. [32]

      McDonald, L. A.; Barbieri, L. R.; Carter, G. T.; Kruppa, G.; Feng, X.; Lotvin, J. A.; Siegel, M. M. Anal. Chem. 2003, 75, 2730.  doi: 10.1021/ac0264731

    33. [33]

      Li, B.; An, H. J.; Hedrick, J. L.; Lebrilla, C. B. In Glycomics: Methods and Protocols, Humana Press, Totowa, New Jersey, 2009, p. 23.

    34. [34]

      Li, H.; Wolff, J. J.; Van Orden, S. L.; Loo, J. A. Anal. Chem. 2014, 86, 317.  doi: 10.1021/ac4033214

    35. [35]

      Ohta, D.; Kanaya, S.; Suzuki, H. Curr. Opin. Biotech. 2010, 21, 35.  doi: 10.1016/j.copbio.2010.01.012

    36. [36]

      Cooper, H. J.; H kansson, K.; Marshall, A. G. Mass Spectrom. Rev. 2004, 24, 201.
       

    37. [37]

      Baba, T.; Hashimoto, Y.; Hasegawa, H.; Hirabayashi, A.; Waki, I. Anal. Chem. 2004, 76, 4263.  doi: 10.1021/ac049309h

    38. [38]

      Satake, H.; Hasegawa, H.; Hirabayashi, A.; Hashimoto, Y.; Baba, T.; Masuda, K. Anal. Chem. 2007, 79, 8755.  doi: 10.1021/ac071462z

    39. [39]

      Zubarev, R. A.; Nielsen, M. L.; Budnik, B. A. Eur. J. Mass Spectrom. 2000, 6, 235.  doi: 10.1255/ejms.351

    40. [40]

      Chan, T. W. D.; Ip, W. H. H. J. Am. Soc. Mass Spectrom. 2002, 13, 1396.  doi: 10.1016/S1044-0305(02)00703-1

    41. [41]

      Tsybin, Y. O.; H kansson, P.; Budnik, B. A.; Haselmann, K. F.; Kjeldsen, F.; Gorshkov, M.; Zubarev, R. A. Rapid Commun. Mass Spectrom. 2001, 15, 1849.  doi: 10.1002/rcm.v15:19

    42. [42]

      Haselmann, K. F.; Budnik, B. A.; Olsen, J. V.; Nielsen, M. L.; Reis, C. A.; Clausen, H.; Johnsen, A. H.; Zubarev, R. A. Anal. Chem. 2001, 73, 2998.  doi: 10.1021/ac0015523

    43. [43]

      Tsybin, Y. O.; Witt, M.; Baykut, G.; Kjeldsen, F.; H kansson, P. Rapid Commun. Mass Spectrom. 2003, 17, 1759.  doi: 10.1002/rcm.1118

    44. [44]

      Shaw, J. B.; Robinson, E. W.; Paša-Tolić, L. Anal. Chem. 2016, 88, 3019.  doi: 10.1021/acs.analchem.6b00148

    45. [45]

      Horn, D. M.; Ge, Y.; McLafferty, F. W. Anal. Chem. 2000, 72, 4778.  doi: 10.1021/ac000494i

    46. [46]

      Erba, E. B. Proteomics 2014, 14, 1259.  doi: 10.1002/pmic.201300333

    47. [47]

      Lanucara, F.; Eyers, C. E. Mass Spectrom. Rev. 2012, 32, 27.

    48. [48]

      Hao, Q.; Song, T.; Ng, D. C. M.; Quan, Q.; Siu, C.-K.; Chu, I. K. J. Phys. Chem. B 2012, 116, 7627.  doi: 10.1021/jp301882p

    49. [49]

      Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Anal. Chem. 2000, 72, 563.  doi: 10.1021/ac990811p

    50. [50]

      Roepstorff, P.; Fohlman, J. Biomed. Mass Spectrom. 1984, 11, 601.  doi: 10.1002/(ISSN)1096-9888

    51. [51]

      Biemann, K. Biomed. Environ. Mass Spectrom. 1988, 16, 99.  doi: 10.1002/(ISSN)1096-9888

    52. [52]

      Paizs, B.; Suhai, S. Mass Spectrom. Rev. 2004, 24, 508.

    53. [53]

      Laskin, J.; Yang, Z.; Song, T.; Lam, C.; Chu, I. K. J. Am. Chem. Soc. 2010, 132, 16006.  doi: 10.1021/ja104438z

    54. [54]

      Yu, L.; Tan, Y.; Tsai, Y.; Goodlett, D. R.; Polfer, N. C. J. Proteome Res. 2011, 10, 2409.  doi: 10.1021/pr101235w

    55. [55]

      Harrison, A. G.; Young, A. B.; Bleiholder, C.; Suhai, S.; Paizs, B. J. Am. Chem. Soc. 2006, 128, 10364.  doi: 10.1021/ja062440h

    56. [56]

      Bleiholder, C.; Osburn, S.; Williams, T. D.; Suhai, S.; Van Stipdonk, M.; Harrison, A. G.; Paizs, B. J. Am. Chem. Soc. 2008, 130, 17774.  doi: 10.1021/ja805074d

    57. [57]

      Tureček, F.; Reid, P. J. Int. J. Mass Spectrom. 2003, 222, 49.  doi: 10.1016/S1387-3806(02)00983-1

    58. [58]

      Tureček, F.; Julian, R. R. Chem. Rev. 2013, 113, 6691.  doi: 10.1021/cr400043s

    59. [59]

      Zubarev, R. A.; Haselmann, K. F.; Budnik, B.; Kjeldsen, F.; Jensen, F. Eur. J. Mass Spectrom. 2002, 8, 337.  doi: 10.1255/ejms.517

    60. [60]

      Tureček, F.; Chen, X.; Hao, C. J. Am. Chem. Soc. 2008, 130, 8818.  doi: 10.1021/ja8019005

    61. [61]

      Chen, X.; Tureček, F. J. Am. Chem. Soc. 2006, 128, 12520.  doi: 10.1021/ja063676o

    62. [62]

      Tureček, F.; Yao, C.; Fung, Y. M. E.; Hayakawa, S.; Hashimoto, M.; Matsubara, H. J. Phys. Chem. B 2009, 113, 7347.  doi: 10.1021/jp900719n

    63. [63]

      Tureček, F.; Chung, T. W.; Moss, C. L.; Wyer, J. A.; Ehlerding, A.; Holm, A. I. S.; Zettergren, H.; Nielsen, S. B.; Hvelplund, P.; Chamot-Rooke, J.; Bythell, B.; Paizs, B. J. Am. Chem. Soc. 2010, 132, 10728.  doi: 10.1021/ja907808h

    64. [64]

      Tureček, F.; Jones, J. W.; Towle, T.; Panja, S.; Nielsen, S. B.; Hvelplund, P.; Paizs, B. J. Am. Chem. Soc. 2008, 130, 14584.  doi: 10.1021/ja8036367

    65. [65]

      Syrstad, E. A.; Tureček, F. J. Am. Soc. Mass Spectrom. 2005, 16, 208.  doi: 10.1016/j.jasms.2004.11.001

    66. [66]

      Panja, S.; Nielsen, S. B.; Hvelplund, P.; Tureček, F. J. Am. Soc. Mass Spectrom. 2008, 19, 1726.  doi: 10.1016/j.jasms.2008.08.001

    67. [67]

      Tureček, F.; Panja, S.; Wyer, J. A.; Ehlerding, A.; Zettergren, H.; Nielsen, S. B.; Hvelplund, P.; Bythell, B.; Paizs, B. J. Am. Chem. Soc. 2009, 131, 16472.  doi: 10.1021/ja9050229

    68. [68]

      Sawicka, A.; Skurski, P.; Hudgins, R. R.; Simons, J. J. Phys. Chem. B 2003, 107, 13505.  doi: 10.1021/jp035675d

    69. [69]

      Sobczyk, M.; Anusiewicz, I.; Berdys-Kochanska, J.; Sawicka, A.; Skurski, P.; Simons, J. J. Phys. Chem. A 2005, 109, 250.  doi: 10.1021/jp0463114

    70. [70]

      Sobczyk, M.; Simons, J. J. Phys. Chem. B 2006, 110, 7519.  doi: 10.1021/jp0604701

    71. [71]

      Leymarie, N.; Costello, C. E.; O'Connor, P. B. J. Am. Chem. Soc. 2003, 125, 8949.  doi: 10.1021/ja028831n

    72. [72]

      Chung, T. W.; Hui, R.; Ledvina, A.; Coon, J. J.; Tureček, F. J. Am. Soc. Mass Spectrom. 2012, 23, 1336.  doi: 10.1007/s13361-012-0408-9

    73. [73]

      Ledvina, A. R.; Chung, T. W.; Hui, R.; Coon, J. J.; Tureček, F. J. Am. Soc. Mass Spectrom. 2012, 23, 1351.  doi: 10.1007/s13361-012-0409-8

    74. [74]

      Qi, Y.; Bortoli, S.; Volmer, D. A. J. Am. Soc. Mass Spectrom. 2014, 25, 1253.  doi: 10.1007/s13361-014-0893-0

    75. [75]

      Wongkongkathep, P.; Li, H.; Zhang, X.; Loo, R. R. O.; Julian, R. R.; Loo, J. A. Int. J. Mass Spectrom. 2015, 390, 137.  doi: 10.1016/j.ijms.2015.07.008

    76. [76]

      Uggerud, E. Int. J. Mass Spectrom. 2004, 234, 45.  doi: 10.1016/j.ijms.2004.01.020

    77. [77]

      Li, H.; O'Connor, P. B. J. Am. Soc. Mass Spectrom. 2012, 23, 2001.  doi: 10.1007/s13361-012-0473-0

    78. [78]

      Cole, S. R.; Ma, X.; Zhang, X.; Xia, Y. J. Am. Soc. Mass Spectrom. 2012, 23, 310.  doi: 10.1007/s13361-011-0300-z

    79. [79]

      Mentinova, M.; Han, H.; McLuckey, S. A. Rapid Commun. Mass Spectrom. 2009, 23, 2647.  doi: 10.1002/rcm.v23:17

    80. [80]

      O'Connor, P. B.; Lin, C.; Cournoyer, J. J.; Pittman, J. L.; Belyayev, M.; Budnik, B. A. J. Am. Soc. Mass Spectrom. 2006, 17, 576.  doi: 10.1016/j.jasms.2005.12.015

    81. [81]

      Holm, A. I. S.; Hvelplund, P.; Kadhane, U.; Larsen, M. K.; Liu, B.; Nielsen, S. B.; Panja, S.; Pedersen, J. M.; Skrydstrup, T.; Støchkel, K.; Williams, E. R.; Worm, E. S. J. Phys. Chem. A 2007, 111, 9641.  doi: 10.1021/jp075943y

    82. [82]

      Iavarone, A. T.; Paech, K.; Williams, E. R. Anal. Chem. 2004, 76, 2231.  doi: 10.1021/ac035431p

    83. [83]

      Savitski, M. M.; Kjeldsen, F.; Nielsen, M. L.; Zubarev, R. A. Angew. Chem., Int. Ed. 2006, 45, 5301.  doi: 10.1002/(ISSN)1521-3773

    84. [84]

      Adams, C. M.; Kjeldsen, F.; Zubarev, R. A.; Budnik, B. A.; Haselmann, K. F. J. Am. Soc. Mass Spectrom. 2004, 15, 1087.  doi: 10.1016/j.jasms.2004.04.026

    85. [85]

      Adams, C. M.; Zubarev, R. A. Anal. Chem. 2005, 77, 4571.  doi: 10.1021/ac0503963

    86. [86]

      Polfer, N. C.; Haselmann, K. F.; Langridge-Smith, P. R. R.; Barran, P. E. Mol. Phys. 2005, 103, 1481.  doi: 10.1080/00268970500095998

    87. [87]

      Hamidane, H. B.; He, H.; Tsybin, O. Y.; Emmett, M. R.; Hendrickson, C. L.; Marshall, A. G.; Tsybin, Y. O. J. Am. Soc. Mass Spectrom. 2009, 20, 1182.  doi: 10.1016/j.jasms.2009.02.015

    88. [88]

      Lin, C.; Cournoyer, J. J.; O'Connor, P. B. J. Am. Soc. Mass Spectrom. 2006, 17, 1605.  doi: 10.1016/j.jasms.2006.07.007

    89. [89]

      Lin, C.; Cournoyer, J. J.; O'Connor, P. B. J. Am. Soc. Mass Spectrom. 2008, 19, 780.  doi: 10.1016/j.jasms.2008.01.001

    90. [90]

      Tureček, F.; Syrstad, E. A.; Seymour, J. L.; Chen, X.; Yao, C. J. Mass Spectrom. 2003, 38, 1093.  doi: 10.1002/(ISSN)1096-9888

    91. [91]

      Qi, Y.; Volmer, D. A. Analyst 2016, 141, 794.  doi: 10.1039/C5AN02171E

    92. [92]

      Kjeldsen, F.; Haselmann, K. F.; Budnik, B. A.; Jensen, F.; Zubarev, R. A. Chem. Phys. Lett. 2002, 356, 201.  doi: 10.1016/S0009-2614(02)00149-5

    93. [93]

      Kjeldsen, F.; Haselmann, K. F.; Sørensen, E. S.; Zubarev, R. A. Anal. Chem. 2003, 75, 1267.  doi: 10.1021/ac020422m

    94. [94]

      Yu, X.; Zhong, W. Anal. Chem. 2016, 88, 5914.  doi: 10.1021/acs.analchem.6b00823

    95. [95]

      Cody, R. B.; Freiser, B. S. Anal. Chem. 1979, 51, 547.  doi: 10.1021/ac50040a022

    96. [96]

      Fung, Y. M. E.; Adams, C. M.; Zubarev, R. A. J. Am. Chem. Soc. 2009, 131, 9977.  doi: 10.1021/ja8087407

    97. [97]

      Wolff, J. J.; Laremore, T. N.; Aslam, H.; Linhardt, R. J.; Amster, I. J. J. Am. Soc. Mass Spectrom. 2008, 19, 1449.  doi: 10.1016/j.jasms.2008.06.024

    98. [98]

      Lioe, H.; O'Hair, R. A. J. Anal. Bioanal. Chem. 2007, 389, 1429.  doi: 10.1007/s00216-007-1535-1

    99. [99]

      Yoo, H. J.; Wang, N.; Zhuang, S.; Song, H.; H kansson, K. J. Am. Chem. Soc. 2011, 133, 16790.  doi: 10.1021/ja207736y

    100. [100]

      Hersberger, K. E.; H kansson, K. Anal. Chem. 2012, 84, 6370.  doi: 10.1021/ac301536r

    101. [101]

      Budnik, B. A.; Haselmann, K. F.; Zubarev, R. A. Chem. Phys. Lett. 2001, 342, 299.  doi: 10.1016/S0009-2614(01)00501-2

    102. [102]

      Larraillet, V.; Vorobyev, A.; Brunet, C.; Lemoine, J.; Tsybin, Y. O.; Antoine, R.; Dugourd, P. J. Am. Soc. Mass Spectrom. 2010, 21, 670.  doi: 10.1016/j.jasms.2010.01.015

    103. [103]

      Kjeldsen, F.; Silivra, O. A.; Ivonin, I. A.; Haselmann, K. F.; Gorshkov, M.; Zubarev, R. A. Chem.-Eur. J. 2005, 11, 1803.  doi: 10.1002/(ISSN)1521-3765

    104. [104]

      Zhang, H.; Cui, W.; Wen, J.; Blankenship, R. E.; Gross, M. L. Anal. Chem. 2011, 83, 5598.  doi: 10.1021/ac200695d

    105. [105]

      Savitski, M. M.; Kjeldsen, F.; Nielsen, M. L.; Zubarev, R. A. J. Am. Soc. Mass Spectrom. 2007, 18, 113.  doi: 10.1016/j.jasms.2006.09.008

    106. [106]

      Ledvina, A. R.; Beauchene, N. A.; McAlister, G. C.; Syka, J. E. P.; Schwartz, J. C.; Griep-Raming, J.; Westphall, M. S.; Coon, J. J. Anal. Chem. 2010, 82, 10068.  doi: 10.1021/ac1020358

    107. [107]

      Swaney, D. L.; McAlister, G. C.; Wirtala, M.; Schwartz, J. C.; Syka, J. E. P.; Coon, J. J. Anal. Chem. 2007, 79, 477.  doi: 10.1021/ac061457f

    108. [108]

      Zhurov, K. O.; Fornelli, L.; Wodrich, M. D.; Laskay, . A.; Tsybin, Y. O. Chem. Soc. Rev. 2013, 42, 5014.  doi: 10.1039/c3cs35477f

    109. [109]

      Hubler, S. L.; Jue, A.; Keith, J.; McAlister, G. C.; Craciun, G.; Coon, J. J. J. Am. Chem. Soc. 2008, 130, 6388.  doi: 10.1021/ja7099985

    110. [110]

      Tsur, D.; Tanner, S.; Zandi, E.; Bafna, V.; Pevzner, P. A. Nat. Biotechnol. 2005, 23, 1562.  doi: 10.1038/nbt1168

    111. [111]

      Fu, Y.; Yang, Q.; Sun, R.; Li, D.; Zeng, R.; Ling, C. X.; Gao, W. Bioinformatics 2004, 20, 1948.  doi: 10.1093/bioinformatics/bth186

    112. [112]

      Li, D.; Fu, Y.; Sun, R.; Ling, C. X.; Wei, Y.; Zhou, H.; Zeng, R.; Yang, Q.; He, S.; Gao, W. Bioinformatics 2005, 21, 3049.  doi: 10.1093/bioinformatics/bti439

    113. [113]

      Wang, L.-H.; Li, D.-Q.; Fu, Y.; Wang, H.-P.; Zhang, J.-F.; Yuan, Z.-F.; Sun, R.-X.; Zeng, R.; He, S.-M.; Gao, W. Rapid Commun. Mass Spectrom. 2007, 21, 2985.  doi: 10.1002/(ISSN)1097-0231

    114. [114]

      Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. J. Am. Soc. Mass Spectrom. 2000, 11, 320.  doi: 10.1016/S1044-0305(99)00157-9

    115. [115]

      Jaitly, N.; Mayampurath, A.; Littlefield, K.; Adkins, J. N.; Anderson, G. A.; Smith, R. D. BMC Bioinformatics 2009, 10, 87.  doi: 10.1186/1471-2105-10-87

    116. [116]

      Guner, H.; Close, P. L.; Cai, W.; Zhang, H.; Peng, Y.; Gregorich, Z. R.; Ge, Y. J. Am. Soc. Mass Spectrom. 2014, 25, 464.  doi: 10.1007/s13361-013-0789-4

    117. [117]

      Bourgoin-Voillard, S.; Leymarie, N.; Costello, C. E. Proteomics 2014, 14, 1174.  doi: 10.1002/pmic.201300433

    118. [118]

      Li, H.; Wongkongkathep, P.; Van Orden, S. L.; Loo, R. R. O.; Loo, J. A. J. Am. Soc. Mass Spectrom. 2014, 25, 2060.  doi: 10.1007/s13361-014-0928-6

    119. [119]

      Wang, Z.; Chen, X.; Deng, L.; Li, W.; Wong, Y. L. E.; Chan, T. W. D. Eur. J. Mass Spectrom. 2015, 21, 707.  doi: 10.1255/ejms.1386

    120. [120]

      Fung, Y. M. E.; Duan, L.; Chan, T. W. D. Eur. J. Mass Spectrom. 2004, 10, 449.  doi: 10.1255/ejms.648

    121. [121]

      Chan, W. Y. K.; Chan, T. W. D. J. Am. Soc. Mass Spectrom. 2010, 21, 1235.  doi: 10.1016/j.jasms.2010.03.034

    122. [122]

      Wong, P. S. J.; Chen, X.; Deng, L.; Wang, Z.; Li, W.; Wong, Y. L. E.; Chan, T. W. D. Rapid Commun. Mass Spectrom. 2015, 29, 1757.  doi: 10.1002/rcm.7275

    123. [123]

      Fung, Y. M. E.; Chan, T. W. D. J. Am. Soc. Mass Spectrom. 2005, 16, 1523.  doi: 10.1016/j.jasms.2005.05.001

    124. [124]

      Fung, Y. M. E.; Liu, H.; Chan, T. W. D. J. Am. Soc. Mass Spectrom. 2006, 17, 757.  doi: 10.1016/j.jasms.2006.01.014

    125. [125]

      Chen, X.; Chan, W. Y. K.; Wong, P. S.; Yeung, H. S.; Chan, T. W. D. J. Am. Soc. Mass Spectrom. 2011, 22, 233.  doi: 10.1007/s13361-010-0035-2

    126. [126]

      Wong, Y. L. E.; Chen, X.; Wu, R.; Hung, Y. L. W.; Yeung, H. S.; Chan, T. W. D. Anal. Chem. 2017, 89, 7773.  doi: 10.1021/acs.analchem.7b01808

    127. [127]

      Chen, X.; Fung, Y. M. E.; Chan, W. Y. K.; Wong, P. S.; Yeung, H. S.; Chan, T. W. D. J. Am. Soc. Mass Spectrom. 2011, 22, 2232.  doi: 10.1007/s13361-011-0246-1

    128. [128]

      Chen, X.; Wang, Z.; Li, W.; Wong, Y. L. E.; Chan, T. W. D. Eur. J. Mass Spectrom. 2015, 21, 649.  doi: 10.1255/ejms.1382

    129. [129]

      Chen, X.; Liu, G.; Elaine Wong, Y. L.; Deng, L.; Wang, Z.; Li, W.; Chan, T. W. D. Rapid Commun. Mass Spectrom. 2016, 30, 705.  doi: 10.1002/rcm.7502

    130. [130]

      Fung, Y. M. E.; Kjeldsen, F.; Silivra, O. A.; Chan, T. W. D.; Zubarev, R. A. Angew. Chem., Int. Ed. 2005, 44, 6399.  doi: 10.1002/(ISSN)1521-3773

    131. [131]

      Chan, T. W. D.; Choy, M. F.; Chan, W. Y. K.; Fung, Y. M. E. J. Am. Soc. Mass Spectrom. 2009, 20, 213.  doi: 10.1016/j.jasms.2008.08.018

    132. [132]

      Stobiecki, M. Phytochemistry 2000, 54, 237.  doi: 10.1016/S0031-9422(00)00091-1

    133. [133]

      Qu, F.; Li, Y.-X.; Zhang, Y.-C.; Zang, J. Chin. J. Org. Chem. 2003, 23, 249.
       

    134. [134]

      Ni onuevo, M. R.; Lebrilla, C. B. Nutr. Rev. 2009, 67, S216.  doi: 10.1111/nure.2009.67.issue-s2

    135. [135]

      Wang, Y.-J.; Huang, C.-C.; Gao, F.; Zhang, J.-W.; Li, Y.; Bu, D.-B.; Sun, S.-W. Prog. Biochem. Biophys. 2017, 44, 830.
       

    136. [136]

      Wong, Y. L. E.; Chen, X.; Li, W.; Wang, Z.; Hung, Y. L. W.; Wu, R.; Chan, T. W. D. Anal. Chem. 2016, 88, 5590.  doi: 10.1021/acs.analchem.6b00908

    137. [137]

      Wong, Y. L. E.; Chen, X.; Wu, R.; Hung, Y. L. W.; Chan, T. W. D. Anal. Chem. 2017, 89, 10111.  doi: 10.1021/acs.analchem.7b03128

    138. [138]

      Fischle, W.; Tseng, B. S.; Dormann, H. L.; Ueberheide, B. M.; Garcia, B. A.; Shabanowitz, J.; Hunt, D. F.; Funabiki, H.; Allis, C. D. Nature 2005, 438, 1116.  doi: 10.1038/nature04219

    139. [139]

      Ge, Y.; Lawhorn, B. G.; ElNaggar, M.; Strauss, E.; Park, J.-H.; Begley, T. P.; McLafferty, F. W. J. Am. Chem. Soc. 2002, 124, 672.  doi: 10.1021/ja011335z

    140. [140]

      Pesavento, J. J.; Mizzen, C. A.; Kelleher, N. L. Anal. Chem. 2006, 78, 4271.  doi: 10.1021/ac0600050

    141. [141]

      Reid, G. E.; Stephenson, J. L.; McLuckey, S. A. Anal. Chem. 2002, 74, 577.  doi: 10.1021/ac015618l

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(32)
  • Abstract views(3653)
  • HTML views(700)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return