Citation: Hao Yong-Jia, Yu Jin-Sheng, Zhou Ying, Wang Xin, Zhou Jian. Influence of C—F…H—X Interactions on Organic Reactions[J]. Acta Chimica Sinica, ;2018, 76(12): 925-939. doi: 10.6023/A18080360 shu

Influence of C—F…H—X Interactions on Organic Reactions

  • Corresponding author: Zhou Jian, jzhou@chem.ecnu.edu.cn
  • Received Date: 31 August 2018
    Available Online: 18 December 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21472049, 81660576) and Guizhou engineering research center for the exploitation and utilization technology of medicine and food dual-use resources

Figures(17)

  • Although the debate on whether or not C―F bonds can function as H-bond acceptors lasted for tens of years, dating back to 1939 when Pauling pointed out in The Nature of the Chemical Bond that C-F bonds do not have significant power to act as proton acceptors in the formation of hydrogen bonds, more and more evidences support the existence of C―F…H―X interactions, and in particular, C―F…H―O and C―F…H―N interactions cannot be ignored.Because the sum of the van der Waals radii of hydrogen and fluorine atoms is reported to be around as 2.55 , C―F…H―X interactions may exist if the calculated distance of F…H is less than 2.50 . Strong C―F…H―X interactions may occur if the calculated distance is less than 2.30 and the F…H―X angle is greater than 120°.In 2011, we observed strong fluorine effects on the Strecker reaction of ketimines: while Schreiner's thiourea could catalyze the Strecker reaction of acetophenone derived ketimine using TMSCN, it was unable to mediate the corresponding reaction of analogy α-CF3 or α-CF2H ketimines. Theoretical calculations revealed that the C―F…H―N interactions between the C―F bond of fluorinated ketimines and thiourea played the key role. This is the first report on the influence of such subtle interactions on organic reactions. Since then, reports from our and other groups revealed various types of C―F…H―X interactions that may be present in the reaction course, to strongly influence the reactivity and selectivity. Although successful examples are still limited, these achievements have suggested that C―F…H―X interactions may exist between the substrate and the catalyst; the substrate and the solvent; different reaction partners, or engender in the transition state with the reaction intermediate. Importantly, known examples demonstrate it possible to harness C―F…H―X interactions to tune reactivity and/or selectivity, which are useful for new reaction development, as well as for the design of new catalysts. To provide reference and inspiration for researchers engaged in organic synthesis, especially the organic fluorine chemistry, we summarize in this review the recent advances in the study of the influences of C―F…H―X interactions on organic reactions.
  • 加载中
    1. [1]

      Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J. Pure Appl. Chem. 2011, 83, 1619.  doi: 10.1351/PAC-REP-10-01-01

    2. [2]

      Desiraju, G. R. Angew. Chem., Int. Ed. 2011, 50, 52.  doi: 10.1002/anie.v50.1

    3. [3]

      Latimer, W. M.; Rodebush, W. H. J. Am. Chem. Soc. 1920, 42, 1419.  doi: 10.1021/ja01452a015

    4. [4]

      Robertson, J. M. Nature 1935, 136, 755.
       

    5. [5]

      Taylor, R.; Kennard, O. J. Am. Chem. Soc. 1982, 104, 5063.  doi: 10.1021/ja00383a012

    6. [6]

      Katz, B. A.; Spencer, J. R.; Elrod, K.; Luong, C.; Mackman, R. L.; Rice, M.; Sprengeler, P. A.; Allen, D.; Janc, J. J. Am. Chem. Soc. 2002, 124, 11657.  doi: 10.1021/ja020082m

    7. [7]

      (a) Bondar, A. N.; White, S. H. BBA-Biomembranes 2012, 1818, 942. (b) Zhang, J.; Chen, P. C.; Yuan, B. K.; Ji, W.; Cheng, Z. H.; Qiu, X. H. Science 2013, 342, 611.

    8. [8]

      For the recent works on H-bonding interaction from Chinese research group: (a) Wang, M.; Cheng, C. Q.; Song, J. T.; Wang, J.; Zhou, X. G.; Xiang, H. F.; Liu, J. Chin. J. Chem. 2018, 36, 698. (b) Zhu, X. W.; Cui, X. Y.; Cai, W. S.; Shao, X. G. Acta Chim. Sinica 2018, 76, 298(in Chinese). (朱雪薇, 崔晓宇, 蔡文生, 邵学广, 化学学报, 2018, 76, 298.). (c) Sun, G. J.; Nie, C. B.; Zhao, X.; Li, Z. T. Chin. J. Org. Chem. 2017, 37, 1757(in Chinese). (孙广军, 聂承斌, 赵新, 黎占亭, 有机化学, 2017, 37, 1757.)

    9. [9]

      Desiraju, G. R. Acc. Chem. Res. 1991, 24, 290.  doi: 10.1021/ar00010a002

    10. [10]

      Jeffrey, G. A. Cryst. Rev. 1995, 4, 213.  doi: 10.1080/08893119508039923

    11. [11]

      For a review on H-bond donor catalysis, see: Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713. For bifucntional catalysis with H-bond donors, see amide based organocatalysts: (a) Liu, X. H.; Lin, L. L.; Feng, X. M. Chem. Commun. 2009, 41, 6145; with enamine catalysis: (b) Kano, T.; Maruoka, K. Chem. Commun. 2008, 43, 5465; with tertiary phosphine catalysis: (c) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005; (d) Xu, L. W. ChemCatChem 2013, 5, 2775; (e) Wang, S. X.; Han, X. Y.; Zhong, F. R.; Wang, Y. Q.; Lu, Y. X. Synlett 2011, 19, 2766; with NHCs catalysis: (f) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314; (g) Sun, L. H.; Liang, Z. Q.; Jia, W. Q.; Ye, S. Angew. Chem., Int. Ed., 2013, 52, 5803; (h) Lv, H.; Jia, W. Q.; Sun, L. H.; Ye, S. Angew. Chem., Int. Ed. 2013, 52, 8607; with PTC catalysis: (i) Novacek, J.; Waser, M. Eur. J. Org. Chem. 2013, 4, 637; (j) Shirakawa, S.; Maruoka, K. Tetrahedron Lett. 2014, 55, 3833; with metal catalysis: (k) Song, J.; Guo, C.; Chen, P. H.; Yu, J.; Luo, S. W.; Gong, L. Z. Chem. Eur. J. 2011, 17, 7786; (l) Lang, K.; Park, J.; Hong, S. Angew. Chem., Int. Ed. 2012, 51, 1620. with phosphoramide: (m) Ding, M.; Zhou, F.; Liu, Y. L.; Wang, C. H.; Zhao, X. L.; Zhou, J. Chem. Sci. 2011, 2, 2035. (n) Gao, W. M.; Yu, J. S.; Zhao, Y. L.; Liu, Y. L.; Zhou, F.; Wu, H. H.; Zhou, J. Chem. Commun. 2014, 50, 15179.

    12. [12]

      O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.  doi: 10.1039/B711844A

    13. [13]

      Howard, J. A. K.; Hoy, V. J.; O'Hagan, D.; Smith, G. T. Tetrahedron 1996, 52, 12613.  doi: 10.1016/0040-4020(96)00749-1

    14. [14]

      Pauling, L. The Nature of the Chemical Bond, Cornell University Press, Ithaca, NY, 1939, p. 28.

    15. [15]

      Dunitz, J. D.; Taylor, R. Chem. Eur. J. 1997, 3, 89.  doi: 10.1002/(ISSN)1521-3765

    16. [16]

      Shimoni, L.; Glusker, J. P. Struct. Chem. 1994, 5, 383.
       

    17. [17]

      Thalladi, V. R.; Weiss, H. C.; Bla1ser, D.; Boese, R.; Nangia, A.; Desiraju, G. R. J. Am. Chem. Soc. 1998, 120, 8702.

    18. [18]

      Thakur, T. S.; Kirchner, M. T.; Bläser, D.; Boese, R.; Desiraju, G. R. CrystEngComm 2010, 12, 2079.  doi: 10.1039/b925082d

    19. [19]

      Anzahaee, M. Y.; Watts, J. K.; Alla, N. R.; Nicholson, A. W.; Damha, M. J. J. Am. Chem. Soc. 2011, 133, 728.  doi: 10.1021/ja109817p

    20. [20]

      Schneider, H. J. Chem. Sci. 2012, 3, 1381.  doi: 10.1039/c2sc00764a

    21. [21]

      Zhao, X.; Wang, X. Z.; Jiang, X. K.; Chen, Y. Q.; Li, Z. T.; Chen, G. J. J. Am. Chem. Soc. 2003, 125, 15128.  doi: 10.1021/ja037312x

    22. [22]

      Liu, Y. L.; Shi, T. D.; Zhou, F.; Zhao, X. L.; Wang, X.; Zhou, J. Org. Lett. 2011, 13, 3826.  doi: 10.1021/ol201316z

    23. [23]

      (a) Pesenti, C.; Viani, F. ChemBioChem 2004, 5, 590. (b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (d) Wang, J.; Liu, H. Chin. J. Org. Chem. 2011, 31, 1785(in Chinese). (王江, 柳红, 有机化学, 2011, 31, 1785.) (e) Ojima, I. J. Org. Chem. 2014, 44, 6358. (f) Liu, Y. L.; Yu, J. S.; Zhou, J. Asian J. Org. Chem. 2013, 2, 194. (g) Lin, J. H.; Xiao, J. C. Tetrahedron Lett. 2014, 55, 6147. (h) Ni, C. F.; Zhu, L. G.; Hu, J. B. Acta Chim. Sinica 2015, 73, 90(in Chinese). (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.) (i) Champagne, P. A.; Desroches, J.; Hamel, J. D.; Vandamme, M.; Paquin, J. F. Chem. Rev. 2015, 115, 9073. (j) Zhang, J.; Jin, C. F.; Zhang, Y. J. Chin. J. Org. Chem. 2014, 34, 662(in Chinese). (张霁, 金传飞, 张英俊, 有机化学, 2014, 34, 662.) (k) Swallow, S. Progress in Medicinal Chemistry 2015, 54, 65. (l) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315. (m) Wang, G. M.; Zhu, Z. D.; Chen, Z. Q.; Xu, Z. J.; Zhu, W. L. Acta Pharmaceutica Sinica 2018, 53, 701(in Chinese). (王桂敏, 朱正诞, 陈照强, 徐志建, 朱维良, 药学学报, 2018, 53, 701.) (n) Ni, C. F.; Hu, J. B. Chem. Soc. Rev. 2016, 45, 5441. (o) Cahard, D.; Bizet, V. Chem. Soc. Rev. 2014, 43, 135. (p) Fustero, S.; Fuentes, A. S.; Barrio, P.; Haufe, G. Chem. Rev. 2015, 115, 871.

    24. [24]

      Champagne, P. A.; Desroches, J.; Paquin, J. F. Synthesis 2014, 47, 306.  doi: 10.1055/s-00000084

    25. [25]

      Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012.  doi: 10.1021/ja027246j

    26. [26]

      Jin, L. M.; Xu, X.; Lu, H. J.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem., Int. Ed. 2013, 52, 5309.  doi: 10.1002/anie.201209599

    27. [27]

      Yuan, H. N.; Wang, S.; Nie, J.; Meng, W.; Yao, Q.; Ma, J. A. Angew. Chem., Int. Ed. 2013, 52, 3869.  doi: 10.1002/anie.v52.14

    28. [28]

      Lee, K. A.; Silverio, D. L.; Torker, S.; Robbins, D. W.; Haeffner, F.; Mei, F. W.; Hoveyda, A. H. Nat. Chem. 2016, 8, 768.  doi: 10.1038/nchem.2523

    29. [29]

      (a) Liu, Y. L.; Zeng, X. P.; Zhou, J. Chem. Asian J. 2012, 7, 1759. (b) Liu, H. X.; Tao, Z.; Xie, Q.; Zhou, J.; Wang, X. Comput. Theor. Chem. 2018, 1142, 57. (c) Liu, Y. L.; Zhou, F.; Cao, J. J.; Ji, C. B.; Ding, M.; Zhou, J. Org. Biomol. Chem. 2010, 8, 3847. (d) Ji, C. B.; Cao, Z. Y.; Wang, X.; Wu, D. Y.; Zhou, J. Chem. Asian J. 2013, 8, 877.

    30. [30]

      For the related proton-transfer process, see: (a) Xia, Y. Z.; Liang, Y.; Chen, Y. Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y. H.; Yu, Z. X. J. Am. Chem. Soc. 2007, 129, 3470. (b) Shi, F. Q.; Li, X.; Xia, Y. Z.; Zhang, L. M.; Yu, Z. X. J. Am. Chem. Soc. 2007, 129, 15503. (c) Li, X.; Ye, S. Y.; He, C.; Yu, Z. X. Eur. J. Org. Chem. 2008, 25, 4296.

    31. [31]

      Champagne, P. A.; Pomarole, J.; Thérien, M. È.; Benhassine, Y.; Beaulieu, S.; Legault, C. Y.; Paquin, J. F. Org. Lett. 2013, 15, 2210.  doi: 10.1021/ol400765a

    32. [32]

      Champagne, P. A.; Benhassine, Y.; Desroches, J.; Paquin, J. F. Angew. Chem., Int. Ed. 2014, 53, 13835.  doi: 10.1002/anie.201406088

    33. [33]

      Rosenberg, R. E. J. Phys. Chem. A 2012, 116, 10842.
       

    34. [34]

      Dalvit, C.; Invernizzi, C.; Vulpetti, A. Chem. Eur. J. 2014, 20, 11058.
       

    35. [35]

      For our efforts in selective fluoroalkylation using fluorinated enol silyl ethers, see: (a) Liu, Y. L.; Zhou, J. Chem. Commun. 2012, 48, 1919. (b) Liu, Y. L.; Zhou, J. Acta Chim. Sinica 2012, 70, 1451(in Chinese). (刘运林, 周剑, 化学学报, 2012, 70, 1451.) (c) Liu, Y. L.; Liao, F. M.; Niu, Y. F.; Zhao, X. L.; Zhou, J. Org. Chem. Front. 2014, 1, 742. (d) Liao, F. M.; Liu, Y. L.; Yu, J. S.; Zhou, F.; Zhou, J. Org. Biomol. Chem. 2015, 13, 8906. (e) Yu, J. S.; Zhou, J. Org. Biomol. Chem. 2015, 13, 10968. (f) Yu, J. S.; Liao, F. M.; Gao, W. M.; Liao, K.; Zuo, R. L.; Zhou, J. Angew. Chem., Int. Ed. 2015, 54, 7381. (g) Yu, J. S.; Zhou, J. Org. Chem. Front. 2016, 3, 298. (h) Zeng, X. P.; Zhou, J. J. Am. Chem. Soc. 2016, 138, 8730. (i) Liao, F. M.; Cao, Z. Y.; Yu, J. S.; Zhou, J. Angew. Chem., Int. Ed. 2017, 56, 2459. (j) Hu, X. S.; Du, Y.; Yu, J. S.; Liao, F. M.; Ding, P. G.; Zhou, J. Synlett 2017, 28, 2194. (k) Liao, F. M.; Gao, X. T.; Hu, X. S.; Xie, S. L.; Yu, J. S.; Zhou, J. Sci. Bull. 2017, 62, 1504. (l) Liao, F. M.; Du, Y.; Zhou, F.; Zhou, J. Acta Chim. Sinica 2018, 76, DOI: 10.6023/A18060238(inChinese).(廖富民,杜溢,周锋,周剑,化学学报,2018,76,DOI: 10.6023/A18060238).

    36. [36]

      Yu, J. S.; Liu, Y. L.; Tang, J.; Wang, X.; Zhou, J. Angew. Chem., Int. Ed. 2014, 53, 9512.  doi: 10.1002/anie.201404432

    37. [37]

      For the use of chiral Lewis base to activate silyl reagents, see: (a) Tian, S. K.; Deng, L. J. Am. Chem. Soc. 2001, 123, 6195. (b) Tian, S. K.; Hong, R.; Deng, L. J. Am. Chem. Soc. 2003, 125, 9900. (c) Fuerst, D. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 8964. (d) Wang, J.; Hu, X. L.; Jiang, J.; Gou, S. H.; Huang, X.; Liu, X. H.; Feng, X. M. Angew. Chem., Int. Ed. 2007, 46, 8468. (e) Wang, J.; Wang, W. T.; Li, W.; Hu, X. L.; Shen, K.; Tan, C.; Liu, X. H.; Feng, X. M. Chem. Eur. J. 2009, 15, 11642. (f) Liu, Y. L.; Zhou, J. Chem. Commun. 2013, 49, 4421. (g) Zhao, Y. L.; Cao, Z. Y.; Zeng, X. P.; Shi, J. M.; Yu, Y. H.; Zhou, J. Chem. Commun. 2016, 52, 3943. For a review: Liu, Y. L.; Zhou, J. Synthesis 2015, 47, 1210.

    38. [38]

      Aronoff, M. R.; Gold, B.; Raines, R. T. Tetrahedron Lett. 2016, 57, 2347.  doi: 10.1016/j.tetlet.2016.04.020

    39. [39]

      Aronoff, M. R.; Gold, B.; Raines, R. T. Org. Lett. 2016, 18, 1538.  doi: 10.1021/acs.orglett.6b00278

    40. [40]

      Lou, H. Q.; Wang, Y. T.; Jin, E. Z.; Lin, X. F. J. Org. Chem. 2016, 81, 2019.  doi: 10.1021/acs.joc.5b02848

    41. [41]

      Liu, Y. B.; Hu, L. R.; Chen, H.; Du, H. F. Chem. Eur. J. 2015, 21, 3495.  doi: 10.1002/chem.201405388

    42. [42]

      (a) Wang, X. M.; Han, Z. B.; Wang, Z.; Ding, K. L. Angew. Chem., Int. Ed. 2012, 51, 936. (b) Wang, X. M.; Meng, F. Y.; Wang, Y.; Han, Z. B.; Chen, Y. J.; Liu, L.; Wang, Z.; Ding, K. L. Angew. Chem., Int. Ed. 2012, 51, 9276.

    43. [43]

      (a) Cao, Z. Y.; Wang, X. M.; Tan, C.; Zhao, X. L.; Zhou, J.; Ding, K. L. J. Am. Chem. Soc. 2013, 135, 8197. Also see: (b) Cao, Z. Y.; Zhou, F.; Zhou, J. Acc. Chem. Res. 2018, 61, 1443. (c) Cao, Z. Y.; Zhou, J. Org. Chem. Front. 2015, 2, 849.

    44. [44]

      Cao, Z. Y.; Wang, W. M.; Liao, K.; Wang, X.; Zhou, J.; Ma, J. Org. Chem. Front. 2018, 5, 2960.  doi: 10.1039/C8QO00842F

    45. [45]

      We also reported a Hg-catalyzed cyclopropanation of diazooxindoles with alkenes, and found that the N-methyl group of diazooxindole had no negative influence on enantioselectivity, possibly because the reaction solvent is not fluorinated solvents, see: Cao, Z. Y.; Zhou, F.; Yu, Y. H.; Zhou, J. Org. Lett. 2013, 15, 42.

    46. [46]

      (a) Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2007, 129, 10646. (b) van Zeist, W. J.; Bickelhaupt, F. M. Org. Biomol. Chem. 2010, 8, 3118. (c) Bickelhaupt, F. M.; Houk, K. N. Angew. Chem., Int. Ed. 2017, 56, 10070.

  • 加载中
    1. [1]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    5. [5]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    9. [9]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    10. [10]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    16. [16]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

Metrics
  • PDF Downloads(64)
  • Abstract views(3195)
  • HTML views(846)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return