Citation: Fu Chao, Yang Yingzi, Qiu Feng. Self-Consistent Field Theory of Dendritic Homopolymers in θ Solvent[J]. Acta Chimica Sinica, ;2019, 77(1): 95-102. doi: 10.6023/A18080351 shu

Self-Consistent Field Theory of Dendritic Homopolymers in θ Solvent

  • Corresponding author: Yang Yingzi, yang_yingzi@fudan.edu.cn
  • Received Date: 27 August 2018
    Available Online: 8 January 2018

    Fund Project: the National Natural Science Foundation of China 21320102005Ministry of Science and Technology of the People's Republic of China 2016YFA0203301the National Natural Science Foundation of China 21774026Project supported by the National Natural Science Foundation of China (Nos. 21320102005, 21774026) and Ministry of Science and Technology of the People's Republic of China (2016YFA0203301)

Figures(9)

  • The dendrimers are a unique class of branched macromolecules with defined architectures synthesized by iterative reaction steps. Because of their highly branched structures, the dendrimers have a wide potential application in many fields, including sensing, drug delivery, catalysis, etc. In order to understand the thermal equilibrium behavior of the dendritic homopolymers in solution, we derived the self-consistent field theory (SCFT) for the dilute dendrimer solutions. The center segment is anchored on the origin of the space, and the shape of the dendrimer is assumed to be spherically symmetric. The pre-averaged interaction parameter u is employed to represent the volume exclusion interaction between the segments. We only focus on the dendrimer immersed in the θ solvent, where the volume exclusion interaction between the segments is negligible (u=0). The number density of the segments, φ(r), is calculated via systematically changing the topological parameters of the molecule, including the functionality f0 of the central segment, the functionality f of the branching points, the degree of polymerization of the spacers P, and the total generation number G. With all parameter combinations, φ(r) was found always maximized at the center and monotonically decreasing along the radial direction. Thus, the dendrimers in θ solvent obeys the "dense-core" model instead of the "dense-shell" model. Increasing f0, f and G results in the increase of φ(r) with any radius r. However, increasing P causes the decrease of φ(r) near the center region and the increase of φ(r) with larger r. The size of the dendrimer, analyzed by calculating the radius of gyration R, increases with f0, f, G and P. R calculated by our SCFT agrees well with the results obtained by the Rouse dynamics. With large f0, f and G, both SCFT and the Rouse dynamics predict the scaling law <R2>≈GPa2.
  • 加载中
    1. [1]

      Xia, K.; Sheng, R.; Zhu, Y.; Li, H.; Luo, T.; Xu, Y.; Cao, A. Acta Chim. Sinica 2010, 68, 1130 (in Chinese).
       

    2. [2]

      Li, J.; Zeng, Y.; Zhang, X.; Yu, T.; Chen, J.; Li, Y. Acta Chim. Sinica 2014, 72, 1157 (in Chinese).
       

    3. [3]

      Qin, T.; Zeng, Y.; Chen, J.; Yu, T.; Li, Y. Acta Chim. Sinica. 2017, 75, 99 (in Chinese).
       

    4. [4]

      Adachi, N.; Sugiyama, H.; Arai, M.; Ogawa, H. Molecules 2014, 19, 4135;  doi: 10.3390/molecules19044135

    5. [5]

      Shaw, P. E.; Cavaye, H.; Chen, S. S. Y.; James, M.; Gentle, I. R.; Burn, P. L. Phys. Chem. Chem. Phys. 2013, 15, 9845.  doi: 10.1039/c3cp51372f

    6. [6]

      Rahman, M. A.; Noh, H. B.; Shim, Y. B. Anal. Chem. 2008, 80, 8020  doi: 10.1021/ac801033s

    7. [7]

      Peng, X. H.; Pan, Q. M.; Rempel, G. L. Chem. Soc. Rev. 2008, 37, 1619.  doi: 10.1039/b716441f

    8. [8]

      Yoon, H. C.; Hong, M. Y.; Kim, H. S. Anal. Chem. 2000, 72, 4420.  doi: 10.1021/ac0003044

    9. [9]

      Bielinska, A. U.; Yen, A.; Wu, H. L.; Zahos, K. M.; Sun, R.; Weiner, N. D.; Baker, J. R.; Roessler, B. J. Biomaterials 2000, 21, 877.  doi: 10.1016/S0142-9612(99)00229-X

    10. [10]

      Vincent, L.; Varet, J.; Pille, J.-Y.; Bompais, H.; Opolon, P.; Maksimenko, A.; Malvy, C.; Mirshahi, M.; Lu, H.; Vannier, J.-P.; Soria, C.; Li, H. Int. J. Cancer 2003, 105, 419.  doi: 10.1002/(ISSN)1097-0215

    11. [11]

      Jain, S.; Kaur, A.; Puri, R.; Utreja, P.; Jain, A.; Bhide, M.; Ratnam, R.; Singh, V.; Patil, A. S.; Jayaraman, N.; Kaushik, G.; Yadav, S.; Khanduja, K. L. Eur. J. Med. Chem. 2010, 45, 4997.  doi: 10.1016/j.ejmech.2010.08.006

    12. [12]

      Kesharwani, P.; Jain, K.; Jain, K. N. Prog. Polym. Sci. 2014, 39, 268.  doi: 10.1016/j.progpolymsci.2013.07.005

    13. [13]

      Astruc, D.; Boisselier, E.; Ornelas, C. Chem. Rev. 2010, 110, 1857.  doi: 10.1021/cr900327d

    14. [14]

      Buhleier, G. E.; Wehner, W.; Vögtle, F. Chemischer Informationsdienst 1978, 2, 155.

    15. [15]

      Cloninger, M. J. Curr. Opin. Chem. Biol. 2002, 6, 742.  doi: 10.1016/S1367-5931(02)00400-3

    16. [16]

      de Gennes, P. G.; Hervet, H. Journal de Physique-Lettres 1983, 44, L351.  doi: 10.1051/jphyslet:01983004409035100

    17. [17]

      Lescanec, R. L.; Muthukumar, M. Macromolecules 1990, 23, 2280.  doi: 10.1021/ma00210a026

    18. [18]

      Mansfield, M. L.; Klushin, L. I.; Klushint, L. I. Macromolecules 1993, 26, 4262.  doi: 10.1021/ma00068a029

    19. [19]

      Biswas, P.; Cherayilk, B. J.; Klushint, L. I. J. Chem. Phys. 1993, 26, 4262.

    20. [20]

      Chen, Z. Y.; Cui, S.-M. Macromolecules 1996, 29, 7943.  doi: 10.1021/ma9514636

    21. [21]

      Carl, M. J. Chem. Soc. 1996, 92, 4151.

    22. [22]

      Carbone, P.; Müller-Plathe, F. Soft Matter 2009, 5, 2638.
       

    23. [23]

      Jurjiu, A.; Dockhorn, N.; Mironova, O.; Sommer, J.-U. Soft Matter 2014, 10, 4935.  doi: 10.1039/c4sm00711e

    24. [24]

      Freire, J. J.; Rubio, A. M. Polymer 2008, 49, 2762.  doi: 10.1016/j.polymer.2008.04.024

    25. [25]

      Boris, D.; Rubinstein, M. Macromolecules 1996, 29, 7251.  doi: 10.1021/ma960397k

    26. [26]

      Götze, I. O.; Likos, C. N. Macromolecules 2003, 36, 8189.  doi: 10.1021/ma030137k

    27. [27]

      Lyulin, A. V.; Davies, G. R.; Adolf, D. B. Macromolecules 2000, 33, 6899.  doi: 10.1021/ma0003811

    28. [28]

      Sheng, Y. J.; Jiang, S. Y.; Tsao, H. K. Macromolecules 2002, 35, 7865.  doi: 10.1021/ma025561k

    29. [29]

      Kumar, A.; Biswas, P. J. Chem. Phys. 2011, 134, 214901.
       

    30. [30]

      Kumar, A.; Biswas, P. Macromolecules 2010, 43, 7378.  doi: 10.1021/ma101142z

    31. [31]

      Cui, W.; Su, C. F.; Merlitz, H.; Wu, C. X.; Sommer, J. U. Macromolecules 2014, 47, 3645.  doi: 10.1021/ma500129h

    32. [32]

      Bosko, J. T.; Prakash, J. R. Macromolecules2011, 44, 660.  doi: 10.1021/ma102094f

    33. [33]

      Rubio, A. M.; McBride, C.; Freire, J. J. Macromolecules 2014, 47, 5379.  doi: 10.1021/ma501127f

    34. [34]

      Mandal, T.; Dasgupta, C.; Maiti, P. K. J. Chem. Phys.2014, 141, 144901.  doi: 10.1063/1.4897160

    35. [35]

      Lu, Y.; An, L.; Wang, Z. G. Macromolecules 2013, 46, 5731.  doi: 10.1021/ma400872s

    36. [36]

      Jana, C.; Jayamurugan, G.; Ganapathy, R.; Maiti, P. K.; Jayaraman, N.; Sood, A. K. J. Chem. Phys. 2006, 124, 204719.  doi: 10.1063/1.2194538

    37. [37]

      Porcar, L.; Hong, K.; Butler, P. D.; Herwig, K. W.; Smith, G. S.; Liu, Y.; Chen, W. R. J. Phys. Chem. B 2010, 114, 1751.  doi: 10.1021/jp9064455

    38. [38]

      Prosa, T. J.; Bauer, B. J.; Amis, E. J. Macromolecules 2001, 34, 4897.  doi: 10.1021/ma0002186

    39. [39]

      Pötschke, D.; Ballauf, M.; Lindner, P.; Fischer, M.; Vögtle, F. J. Appl. Crystallogr. 2000, 33, 605.  doi: 10.1107/S0021889899013795

    40. [40]

      Rosenfeldt, S.; Dingenouts, N.; Ballauf, M.; Werner, N.; Vögtle, F.; Lindner, P. Macromolecules2002, 35, 8098.  doi: 10.1021/ma020585c

    41. [41]

      Prosa, T. J.; Bauer, B. J.; Amis, E. J.; Tomalia, D. A.; Scherrenberg, R. J. Polym. Sci. Part B Polym. Phys. 1997, 35, 2913.  doi: 10.1002/(ISSN)1099-0488

    42. [42]

      Rathgeber, S.; Monkenbusch, M.; Kreitschmann, M.; Urban, V.; Brulet, A. J. Chem. Phys. 2002, 117, 4047.
       

    43. [43]

      Caminade, A. M.; Laurent, R.; Majoral, J. P. Adv. Drug Deliver. Rev. 2005, 57, 2130.  doi: 10.1016/j.addr.2005.09.011

    44. [44]

      Tanaka, H.; Koizumi, S.; Hashimoto, T.; Iyoh, H.; Satoh, M.; Naka, K.; Chujo, Y. Macromolecules 2007, 40, 4327.  doi: 10.1021/ma062930u

    45. [45]

      Klos, J. S.; Sommer, J. U. Macromolecules 2013, 46, 3107.  doi: 10.1021/ma4001989

    46. [46]

      Shi, M.; Yang, Y. Z.; Qiu, F. Acta Chim. Sinica 2018, 76, 715 (in Chinese).
       

    47. [47]

      Mallamace, F.; Canetta, E.; Lombardo, D.; Mazzaglia, A.; Romeo, A.; Scolaro, L. M.; Maino, G. Physica A 2002, 304, 235.  doi: 10.1016/S0378-4371(01)00548-9

    48. [48]

      Yang, Y. Z.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Macromolecules 2017, 50, 4007.  doi: 10.1021/acs.macromol.7b00040

    49. [49]

      Yang, Y. L.; Qiu, F.; Tang, P.; Zhang, H. D. Sci. China Chem. 2006, 36, 1 (in Chinese).

  • 加载中
    1. [1]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(11)
  • Abstract views(890)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return